Understanding
Fabric Capacities

Benni De Jagere

Slides




Premium sponsors

dataon twoday

+ exmon |cllonwaind

Standard sponsors

@ @o=n INVIXO INSPARI packstage Bl

EEEEEEEEEEEEEEEEEEE



Raffle Prizes




=% Microsoft

Benni De Jagere

Senior Program Manager | Fabric Customer Advisory Team ( FabricCAT )

B Fabric CAT

dataMinds .be Member

Y @BenniDeJagere

in /bennidejagere
2 sessionize /bennidejagere

O /bennidejagere

SayNoToPieCharts




Microsoft Fabric
COMMUNITY CONFERENCE

Fabric Capacities
Introduction




_’ Microsoft Fabric

—
A : 4y Single...
€ P 4 a '] v) g
Data Synapse Data Synapse Data Synapse Data Synapse Real Data Onboardmg and trials
) ] X " . Power Bl : .
Factory Engineering Science Warehouse Time Analytics Activator S|g n-on

Navigation model

Al Assisted UX model e
Workspace organization
Collaboration experience
Data Lake

Storage format

Data copy for all engines

] Security model
One Security Cl/CD

Shared Workspaces —

Universal Compute Capacities

Monitoring hub
Onelake Governance & Capacity Metrics
Data Hub

Intelligent data foundation




Capacities are to Fabric what CPUs are to PCs

Personal
Computing

When you purchase a PC you
choose the number of CPU cores.
The more CPU cores the more
load the PC can handle.

The CPU cores are dynamically
shared across all applications
with no need to pre-allocate by

app.

* (0 ® 5 b @
}Ps.@w'p,'Q
vEen<koo

Gl -5« m
Bibele<
54 O &

The total consumption of the
CPU across all the apps cannot
exceed the number of cores. CPU
overload causes a slowdown.

48% 82% 1%
CPU  Memory isk

Apps (10}

Ak Task Manager 26% 65.0 MB 0 MB/s
> % Snipping Tool (2) 0%  28.1MB 0 MB/s
> & Settings 0% 453 MB 0 MB/s
> ol Microsoft Word (2) 05% 1313 MB 0 MB/s
> & Microsoft Teams (9) 45%  80DIMB  0.1MB/s
> @ Microsoft PowerPoint (2) 15% 3005MB  0.1MB/s
> o Microsoft Outlook (13) o) 09%  4140MB 0.1 MB/s
> dflj Microsoft OneNote 0% 852 MB 0 MB/s
> el Microsoft Excel (2) 08%  935MB 0 MB/s
» @ Microsoft Edge (19) 2] 0% 1,6283MB 0.1 MB/s

Fabric
Capacities

In Fabric, you provision a
Capacity with a number of
“capacity units”. The more
capacity units provisioned, the
more compute load handled.

Unlike the PC, capacity units can
be scaled up or down as needed.

The capacity units are
dynamically shared across all the
Fabric workloads, with no pre-
allocation necessary.

A single capacity can
simultaneously drive Bl, DW,
Spark, ML and every other
compute engine in Fabric

The total consumption of the
capacity across all the workloads
cannot exceed the capacity units
provisioned.

Overloading the capacity will
throttle it (slow down).

Auto scale can dynamically
increase the available compute
units avoiding the slowdown.



Capacities are a shared resource

Shared across workloads
A single capacity is providing the compute power for
all Fabric workloads.

4y ‘

. Synapse Data
There is no need to allocate compute for each Engineering

workload separately.

Synapse Data Synapse Data Synapse Real Power Bl Data
Science Warehouse Time Analytics Activator

Shared Across Projects

T 60
[
A single capacity typically supports dozens of 3 20
separate projects simultaneously, each managed in 2
its own workspace. § 20
It is rare to have a capacity dedicated to a single 0
roject
p 'J Workspace 1l Workspace 2 I Workspace 3 B Workspace 4 M Workspace 5l Workspace6 === Limit
Shared across users Developers/Creators Consumers

For each project, many developers will share a
workspace where collaborative development and
consumption at scale is managed.

# Workspace #

Each creator can provision any artifact and run any
job without the need for any pre-approval or
planning

i. io io
ﬁ' éo éo
ﬁ' éo éo
=ile =ilje =
ﬁ' éo éo



Capacities are flexible building blocks for growth

Capacities can be configured in endless ways to meet scale, usage and governance requirements while tuning to minimize TCO
and performance goals

Scale Vertically Scale Horizontally Regional Availability

Increased capacity size provides

h Hout i Scale horizontally using the benefits of : Use different capacities for different
more throughpu : modular design for hardened isolation : : regions to support GDPR / Data

: ' and governance residency requirements
: F8 Capacity 8 CU’s Pl

l Development Region: \
: f ¢ UKSouth
- F16 Capacity 16 CU’s F16
: : Capacities @

: . Test/“Tryout” : ¢ Region: F1§'
l ‘ ‘ France Central Capacities
F64 Capacity 64 CU’s
) Prod F128 Region:
Capacity Sweden Central j

2048



Provisioning and Deploying Capacities

Purchased in Azure

 Purchased either as a PAYG or Rl resource

* Provisioned with a certain amount of
compute units, analogous to CPU cores.

* The more capacity units are provisioned,
the more load the capacity can support

* Multiply SKU size by 30s to match platform
evaluation in metrics app

» Capacities are priced at a fixed hourly rate,
based on capacity units provisioned

* The Rl commitment (1-year reserved
instance) enjoys a 41% discount

Universal Compute Capacities SKU Sizing

Capacity CU’s Power BI
Units (CU) | (per 30s) SKU
—
F2 2 60 -

F4
F8
F16
F32
F64
F128
F256
F512
F1024
F2048

4
8

16
32
64
128
256
512
1024
2048

120
240
480
960
1920
3840
7680
15360
30720
61440

Al
A2
A3
P1
P2
P3
P4
PS5

V-cores
0.25
0.5
1

2

4

8

16
32
64
128
256




Provisioning and Deploying Capacities

Deployed to Regions

 Each capacity resides in a specific region
of the buyers’ choice where both the
data & compute reside

* Workspaces are assigned to a capacity
that provides the compute and storage for
all the workspace artifacts

» Multiple capacities can be purchased,
deployed and managed by different
owners residing in a single tenant allowing
each business unit to pay for their own
consumption

-

Tenant (Microsoft)

(

Capacity 1 (West Europe)

Workspace 1

(Data Science Team)

Workspace 2

(Research)

Item 1
Power BI
Semantic Model

Item 3
Spark Notebook

Item 2
Al Function

Evaluation

Item 4
ML Dataflow

Capacity 2 (Central India)

Capacity 3 (West US)




Microsoft Fabric
COMMUNITY CONFERENCE

Bursting and
Smoothing




Smoothing intro and benefits

Load stabilization

Eliminates Scheduling
contention

Bad actor protection

Smoothing helps capacities self-stabilize by
flattening large spikey loads into a smooth load
profile, eliminating temporal spikes

Large/scheduled Jobs usage (not execution) are
smoothed over 24 hours, eliminating the need to
decide the timing and order of job execution

Interactive operations smoothed over several
minutes, preventing a single user with a very
demanding query from hogging the entire
capacity




What is Bursting?

Job acceleration

Bursting provides extra compute
resources to jobs and queries to
accelerate their completion

The extra resources of bursting
allow jobs to utilize far more
resources than “face value”

Instead of running a job on 64
CU and completing in 60
seconds, bursting could use 256
CUs to complete the job in 15
seconds.

Same amount of work, just
completed faster

No hassle,

No overload

Bursting is automatic when the
system reasons it can accelerate
the job by applying extra
resources. No settings are
required.

Bursting prevents an overload
as the smoothing mechanism
will always flatten the resource
burst



Bursting and smoothing | before and after

Looking at an example of a 64 CU capacity, running multiple workloads over a couple of days...

Before Smoothing After Smoothing

Actual load as executed on the capacity before smoothing Shows the reported load (not runtime execution) against
Bursting accelerates jobs execution by resource boosting the capacity limits

The capacity could be overloaded 25% of the time There is NO overload, and consumption is more stable
Some of the overloads are more than 2x the limit The smoothing of usage fills in gaps

There are periods of no/low usage

160 160

140 140

120 120

o

Bl mmmmm D\ s DE s DS s 0| s RTA ------- Limit Bl mmmm D\W s DE s DS s D| s RTA ------- Limit

o

o

=

o




Jobs Executed

Bursting and Smoothing

» Regardless of SKU, Fabric bursting will automatically allocate
resources as needed to execute at maximum performance

« As such, one query could consume all the quota of a single time
window and much more!

« To avoid an overload, smoothing kicks in

64 CUs




Bursting and Smoothing

Actual execution

« No one (or few) queries can trigger an overload

» Instead of allowing runaway queries to create a local overload,
Fabric smooths the queries reported usage to future time windows

| « Kind of “Buy now, pay in the future” installment plan

1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 I-
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 ]
1 I
1
1
1




4 — large batch job

Bursting and Smoothing

» Large batch processes traditionally were a threat to interactive
queries as they would overload the compute resource

« DBAs traditionally had to carefully schedule these jobs to off-
hours to avoid interference with interactive user experiences




o 1 Bursting and Smoothing

« A similar “installment plan” logic is applied for batch jobs

» But for batch jobs the smoothing is applied uniformly for the next

4 — large batch job >4 hours

« This completely liberates the DBA from any consideration of job
scheduling. The load will be uniform regardless of the schedule.

Actual
execution

« Most importantly, regardless of when batch jobs are scheduled,
there will not be any degradation on interactive query performance

—_——— e — e —— — — . — — — . — — — — — — — ——————— —— —

____________ Reported CU
consumption:

1 24 hours smoothing



Microsoft Fabric
COMMUNITY CONFERENCE

Monitoring with
Capacity Metrics




Capacity Metrics

Fabric Capacity Metrics @

Compute  Storage Help

Pick a capacity from the Capacity name slicer to see data. All visuals on the page will refresh each time a capacity is picked. Learn

@ i 3 - . L v
apacity name: [RoMCHEIcanidR2 e how to use this page by clicking the “info” button.

Monitor Capacities and - o
P | an Ca p acC ity ScCa | e-u p Multi metric ribbon chart CU % over time [ e [

@Dataflow @ Datamart @ Dataset @ EventStream @KustoData... @ Lakehouse @ Report ~ Semantic..  SparkJob... » @Background % @ Interactive % " Background non-billable % @Interactive non-billable % — Autoscale % ==CU % Limit
L] (]
with confidence
ES
3 s
« Tenant wide visibility into
Tenant wide visibility int
ca paCity usage for a” Fabric Mar 01 Mar 03 Mar 05 Mar 07 Mar 09 Mar 11
. - O O
eX p e rl e n CeS Wed28 Thu2s Fri1  Sat2  Sun3 Mond TueS Wed6 ThuT Fi8  Sat9 sun10 Mon 11 Tue 12 Select a field to obtain more details
Select item kind(s): Il ~ Select optional column(s): Rejected count v
. I d t H fy g t d Items (14 days)
e n I . re.so u rce u S a e re n S Workspace Item kind Item name SU (s) Duration (s) Users Rejected count  Billing type '
a n d th e I r I m p a Ct to a u to S Ca I e & Fabric Real-time tutorial KustoDatabase NycTaxiDB 15,371,547.1724 -,182,085.0920 1 0 Billable \
t h rott I i n Power BI Self Service Team Dataset Self Service Feature Analytics 6,832,966.9760 l 327,334.3410 23 0 Billable S
g Power BI Self Service Team SynapseNotebook Topic Analysis New 5,507,444.4680 - 688,425.3050 1 0 Billable '
Power Bl Onboarding Dataset HomeAggsReportV1 788,078.4640 35,859.9340 4 0 Billable
Fabric Real-time tutorial EventStream Something2 304,403.7347 _ 1 0 Billable
o . kI Fabric Real-time tutorial EventStream NyTaxiTripsEventstream 294,564.2428 _ 1 0 Billable
¢ VI eW p reVI eW WO r O a d u S a g e Fabric Real-time tutorial EventStream Something 285,756.6761 _ 1 0 Billable
a I O N g Si d e p ro d u Cti O N WO r kI O a d S Fabric Real-time tutorial EventStream SarinaStream 285,180.5121 . 3,594,600.0000 1 0 Billable
. . PBI Astronauts Dataset Saastronauts DevOps 238,710.7200 12,280.8400 8 0 Billable
to m a ke d a ta - d r I Ve n Ca p a C I ty PBI Astronauts Dataset TeamAnalytics 157,889.7600 10,474.0570 2 0 Billable
M M d M Power Bl Self Service Team Report Sample 154,200.4000 5,340.0000 1 0 Billable
S I Z I n g e C I S I O n S Power Bl Onboarding Dataset Backstage Snapshot 149,855.3280 8,999.7750 9 0 Billable
Power Bl Self Service Team Dataset DSE_DCP 127,051.7920 9,796.5310 5 0 Billable
ICM_Routing_App Dataset ICM Routing App 116,637.7760 7,449.4570 386 0 Billable

Total 31,571,591.0918 31,184,179.5160 386 0




C a p a C Ity M et rl C S Fabric Capacity Metrics Export data (D)

Compute  Storage  Help

. Capacity name:  CAT Premium Eurcpe “  Daterange: 2/18/2024  3/19/2024 Experience: Al v Storage type: Al ~
Monitor OneLak
O n I O r .n e a e 36 6,319.72 6,277.39
C O n S u m pt I O n Workspaces Current storage (GB) illable storage (GB)
Top 10 workspaces by billable storage (GB) % Top: 10
Workspace name Workspace Id Operation name Deletion status  Billing type  Current storage (GB) Billable Storage (GB) Billable storage %
M easure t h e t ren d S Of Wor kS p ace My workspace 80FB67D1-BI9-4BAB-B67F-12072C0637F0  Onelake Storage Active Billable 6,15187 61139 97.40%

. .
Sto ra g e CO n S u m pt I O n a g a I n St Trident Lakehouse Tutorial 6D12BFB1-1D41-4D52-8207-E091156B1254  Onelake Storage Active Billable 7383 ] 7338 1.17%
Ca p acC i ty I i m i tS, by d a y or h our BDJ_NYCCitibike_Raw 7DFOS86E-2E30-493F-89B7-D365A31FA918  Onelake Storage Active Billable 2495 3812 0.61%

OLD_BDJ_NYCCitibikeDL 0357B6A3-EF3D-4497-ABBE-BOFTE3FFC419  Onelake Storage Active Billable 37.50 3732 0.59%
BDJ_NYCCitibike_DL 4631BB2C-EDE9-4097-9272-4CAADS4D7D27  Onelake Storage Active Billable 5.86 5.77 0.09%
Re C O n Ci I e C O Sts W i t h i n te r n a I Lars Fabric Trial BC370BBF-DFB5-4445-A656-1910472B8F1A  Onelake Storage Active Billable 0.00 374 0.06%
C h a r e ba C k rocesses CW New Fabric Tests 0015C3AB-5DA7-44A2-951F-12E0041022E3  Onelake Storage Active Billable 1.28 1.27 0.02%
g p GabiDataCommunityAustria F7DBD360-0C7D-4888-A44F-20B797157EA8  Onelake Storage Active Billable 1.08 1.07 0.02%
Storage (GB) by date Cumulative billable storage (GB) by date
N
6,000 = 6,000
9
=
a
o
i
— o
@ @
9 4000 o 4000
v o
,? )
S 3
-
@ 2
=
2,000 £/ 2000
3
E
3
) I I
: . _unil

Feb 18 Feb 25 Mar 03 Mar 10 Mar 17 Feb 18 Feb 25 Mar 03 Mar 10 Mar 17

©, O O O




Microsoft Fabric
COMMUNITY CONFERENCE

Capacity Throttling
Policies




Throttling intro

 Throttling is the platform policy for managing
consumption that exceeds throughput is
provided by SKU choice

« When workloads exceed the throughput of a

capacity a cumulative debt is tracked to be
burned down

« Cumulative debt is used to determine throttling

policies and is burned down when resources are
free

* Timepoint when job requests exceed the throughput
of a capacity, overages are was added to the
- cumulative buffer to burn down.
Overages - Added
* This graph simplifies identification of the optimal
timepoint to load timepoint drill to analyze the user
operations that contributed to an overage.

- Overages - » Overages being reconciled when future capacity is free
Burndown to burn down

Overages - * The total amount of queued work on the capacity to
» Cumu%tive be burned down in the future when the capacity is not

fully utilized

Utilization Throttling Overages System events
CU % over time Logarithmic

ackgroun: nteractive % ackground non-billable nteractive non-billable utoscale % — 6 Limit
@Backg d% @I Backg d billable % @ | billable % — A le % —CU % Limi

s— NHN LN TN

0%

Mar 11 Mar 13 Mar 15 Mar 17 Mar 19 Mar 21

Select a field to obtain more details

Utilization Throttling

Overages % over time

®Add % @Burndown % @ Cumulative (Right axis) %

s 1000%
o

|4

g

< 0%

L

>

£

T

Y -1000%

O Mar 11 Mar 22

Select a field to obtain more details



Capacity throttling evolution for Fabric ... ™~

@Add % @Burndown % @ Cumulative (Right axis) %

» For Fabric, throttling policies were refined to
deliver multiple benefits

» Reduced throttling for capacities that only experience — ©
occasional spikes

« Added overage protection — rejection policies prevent
overloaded capacities from irrecoverable overload

« Optimizations for long-running jobs: We're optimizing
the platform for long-running jobs, so if a job exceeds
capacity limits, it will run to completion and the overage

arryforward %

C

10 min Interactive %

will be burned down against future capacity
Smoothed Capacity - Platform Policy [Customer Impact
Future Use
<=10m Overage Jobs can consume 10 minutes of future capacity use
- Protection without throttling
> 10m > <= 60m Interactive Delay  User requested interactive type jobs will be throttled
> 60m -> <= 24h :Qnt.eragtlve User requested interactive type jobs will be rejected
ejection
Background User Scheduled background jobs will be rejected from

> ol Rejection execution



Microsoft Fabric
COMMUNITY CONFERENCE

Capacity Planning
with Capacity Metrics




Capacity planning case study - measurement

Throttling Overages
Start with a test or trial capacity to % over i T g— If usage is above the
eva lu ate th e loa d Of S pec Ifl C Fa b rl C @Background % @Interactive % @ Background non-billable % @Interactive non-billable % — Autoscale % —CU % Limit C u rre nt Ca pa C ity l.l m itS
. . ’
Experiences i.e., Power Bl Datasets, ey LY
TimePoint  8/30/2023 7:26:00 PM
Spa rk Notebooks or a o Background non-billable % 211.49% utilization rate to
D atawa re h o u Se 5 Autoscale % 100.00%
v
Total CU Usage % 1250.53% H
m " el | e accommodate via
.......................................... H.“:lllll Ii Interactive CU(s) 620.18 g
o Wil | IIIII capacity scale u
Aug 24 Aug 26 Aug 28 Aug 30 Sep 01 Sep 03 Sep 05 Backgrou?:;kr?rr:vlijgj 238 13;6590 P )/ P
C O 100% in CU(s) 60
Select a field to obtain more details Explore
Fabric Capacity Metrics @ @
Overview  Help
s
8/30/2023 7:26:00 PM VRS T 287 100K F2 60
Timepaint U %?‘Jmﬁ ® CU% 1,249.04% [active operations Background operations SKU CU (s)
@ CU%Limit 100.00%
Interactive operations e Load Capacity Metrics timepoint drill to analyze :
Item Operation Start E CUs) 749.42 v Duration (s)  Total CU (s) Timepoint CU (s) Throttling (s) % of Base Capacity Billing type ®
v - s .
[ Query 8/30/2023 7:1]25_. 8 Limitin CU(s) 60 10 300 30.00 0 5000%  Billable L4 Tota l C U S consum ed . 749 C U (S
[ Query 8/30/2023 723 B o 14 1110 3000 o 5000%  Billable . .
{ Query 8/30/2023 7:19:30.. 8/30/2023 720:03... Failure 32 509 2098 0 4997%  Billable . . ( )
{ Query 8/30/2023 7:18:05.. 8/30/2023 T18:16.. Success 10 958 2995 0 4991%  Billable Ca pa Clty S 1ze : F2
(. Query 8/30/2023 7:12:46... 8/30/2023 T12:56... Success 12 986 2090 0 4984%  Billable . . .
{. Query 8/30/2023 7:20:06.. 8/30/2023 720:16... Success 10 980 2971 0 4952%  Billable ® C U (S) aval I.a b le on yO ur ca pa C |ty o 60 C U
[ Query 8/30/2023 7:17:28.. 8/30/2023 71802 . Failure 33 531 2954 0 4924%  Billable
{ Query 8/30/2023 7:1032... 8/30/2023 T:10:50... Success 7 944 2950 0 4917%  Billable
i Query B/30/2023 7:16:41.. 8/30/2023 717:14... Failure EE] 530 2949 0 49.14%  Billable
' Ouery B/30/2023 7-17:15__8/30/2023 T17:26__ Success 1 1.000 2943 o 4904% Billable
Tote. 13,812 13,894 619.94 ) 1033.23%




Capacity planning case study — SKU selection

Universal Compute Capacities SKU Sizing

Capacity CU’s Power BI Power BI
Units (CU) | (per 30s) SKU V-cores
F2 2 60 -

0.25

F4 4 120 - 0.5
To accommodate a F8 8 240 AL 1
Mthe admin can purchase an F16 16 480 A2 2
F32 capacity providing 960 CU(s) e e
Of th rough pUt F128 128 3840 P2 16

F256 256 7680 P3 32

F512 512 15360 P4 64

F1024 1024 30720 P5 128

F2048 2048 61440 - 256

-



Microsoft Fabric
COMMUNITY CONFERENCE

Pausing and Resuming
Capacities




Introduction to Pausing and Resuming Capacities

7~
Overview and Benefits @ e
N~
Pause and Resume lets you manage compute costs on F SKU capacities by
suspending the execution of all workloads running on the capacity

* When a capacity administrator pauses a capacity:

4 N\ N\ )
Smoothed usage
Workloads stop New requests are will be reconciled
execution not run
(details in the next demo)
- J J J

Note: Onelake storage will remain active and billable while a capacity is paused




Jobs Executed

64CUs 9%

Bursting and Smoothing

» Job execution in Fabric workloads happens on-demand via

capacity powered compute engines

Fabric bursting will automatically allocate resources as needed to
execute at maximum performance




Bursting and Smoothing

Actual

execution
» The Fabric capacity platform smooths usage out to reduce
o throttling which can occur when demand exceeds the throughput
o of the capacity that was purchased

BA CUS

Reported load on CUs

o o o

(09)

—— = e e e -




Pause event on Smoothing and Paused Capacities
Capacity

* When a capacity is paused...




Pause event on Smoothing and Paused Capacities
Capacity

* When a capacity is paused...

« Usage that was smoothed into the future will be “reconciled” and
charged against the capacity at the timestamp the capacity was
paused

» Reconciled usage will show up as a spike in capacity metrics

Throttling Overages System events
CU % over time Logarithmic

@Background % @ Interactive % @ Background non-billable % @ Interactive non-billable % =~ Autoscale % ==CU % Limit

»
o% >
=1
v
0% -wessseems.. ol
9:20 AM 9:30 AM 9:40 AM 9:50 AM 10:00 AM 10:10 AM 10:20 AM 10:30 AM

O O

Select a field to obtain more details




Pause event on
Capacity

Smoothing and Paused Capacities

* When a capacity is paused...

« Usage that was smoothed into the future will be “reconciled” and

charged against the capacity at the timestamp the capacity was
paused

» Pause events can be viewed in the new System events tab

Utilization Throttling Overages

System events

State transition time Capacity state Capacity state change reason
12/13/2023 9:12:14 AM Active Created

12/13/2023 95.29:12 AM Suspended ManuallyPaused

12/13/2023 9:30:15 AM Active ManuallyResumed

12/13/2023 9:33:29 AM Suspended ManuallyPaused

12/13/2023 9:34:58 AM Active ManuallyResumed

Select a field to obtain more details



Pause event on
Capacity

Smoothing and Paused Capacities

* When a capacity is paused...

« Usage that was smoothed into the future will be “reconciled” and
charged against the capacity at the timestamp the capacity was

paused

« Pause events timestamp is shown in the smoothing end field in
timepoint drill views

Fabric Capacity Metrics

Start: 12/13/2023 9:33:30 AM

70

5

OXG,

End: 12/13/2023 9:34:00 AM _— A] S Interactive operations Background operations SKU CU (s)
| -
Interactive operations for timerange
End Status User Duration (s)  Total CU (s) bm»[u\ml CU(s) Throttling (s) % of Base capacity l'hllmry type Operation Id  Smoothing start imou(hmg end
12/13/2023 9:33:02 AM Success Admin@FabricMSIT.on 2 324960 32.4960 0 54.16% Billable 12/13/2023 9:33:00 AM 1]/]71/)(»'::{: 00 AM
12/13/2023 931:33 AM Success Admin@FabricMSIT.on 23 282560 19.7792 0 3297% Billable 12/13/2023 9:31:30 AM | 12/13/2023 9:33:00 AM
12/13/2023 9:30:49 AM Success Admin@FabricMSIT.on. 7 31.5040 15.7520 0 26.25% Billable 12/13/2023 9:30:30 AM | 12/13/2023 9:33:00 AM
12/13/2023 9:32:51 AM Success Admin@FabricMSIT.on 1 137440 12.3696 0 2062% Billable 12/13/2023 9:32:30 AM | 12/13/2023 9:33:00 AM
12/13/2023 9:31:23 AM Success Admin@FabricMSIT.on. 13 18.0000 10.8000 0 18.00% Billable 12/13/2023 9:31:00 AM | 12/13/2023 9:33:00 AM
12/13/2023 9:32:08 AM Success Admin@FabricMST.on 14 132480 10.5984 0 17.66% Billable 12/13/2023 9:32:00 AM | 12/13/2023 9:33:00 AM
12/13/2023 9:32:28 AM Success Admin@FabricMSIT.on 4 117440 10,5696 0 17.62% Billable 12/13/2023 9:32:30 AM | 12/13/2023 9:33:00 AM
12/13/2023 9:33:06 AM Success Admin@FabricMSIT.on.. 4 102560 102560 0 17.09% Billable 12/13/2023 9:33:00 AM | 12/13/2023 9:33:00 AM
12/13/2023 9:30:51 AM Success Admin@FabricMSIT.on. 9 19.2480 9.6240 0 16.04% Billable 12/13/2023 9:30:30 AM | 12/13/2023 9:33:00 AM
o o 169 3140160 218.0848 [) 363.47% -




Microsoft Fabric
COMMUNITY CONFERENCE

Bonus: Tips and Tricks
for capacity
management and
monitoring




My capacity is being throttled! What can | do?

Throttling Chverages Systern events
CU % over time Legarithmic

@ Eackground % @ Interactive % @ Background non-billable % @ Interactive non-billable % = Autoscale % = CL % Limit
200%

100%

CU %

har 03 Mar 05 Mar 07 Mar 09 Mar 11 Mar 13

O O

Select a field to obtain more details

Utilization Throttling Cwverages System events
Interactive rejection Background rejection m Logarithmic

Interactive delay threshold

100%

10 min Interactive %

Mar 03 Plar 0% Mar OF Mar 05 Mdar 11 Mar 13

O O

Select a field to obtain more details

Over 100% utilization doesn't
always result in throttling

No penalty until you hit 100%
on one of the throttling tabs

Note: For F SKU, if throttled, you can pause/resume
to pay now and clear the carry forward, but that is
not a long-term solution



When Capacity Units Run Out
Option 1 - Scale Up

Org1 Prod
WSs

)

Org2 Prod
WSs

L

Self Service
WSs

7

WSs = Workspaces

Dev/Test
WSs

Capacity

Options to add compute

Move to a bigger P SKU or RI F SKU
Turn on autoscale (P SKU)
Manual/Dynamic change size (F SKU)

Pros

Add CUs for all items
Easy

Cons

Cost
Bad actors (items with unintentionally high CU
burn) can still be a problem



Org1 Prod
WSs

J

N

Org2 Prod
WSs

WSs = Workspaces

When Capacity Units Run Out
Option 2 — Scale Out

Self Service
WSs

Dev/Test
WSs

Capacity

Options

Create multiple smaller P or F SKUs based on
organization, type of work, etc.

Pros

Easy

Provides some isolation from bad actors (items
with unintentionally high CU burn)

Flexibility in capacity settings/governance

Cons

Cost
High CU items have increased chance of
throttling



WSs = Workspaces

When Capacity Units Run Out
Option 3 — Optimize

~\

Self Service
Self Sew§se
WSs

Capacity

Approach
* Work with content creators to follow best
practices and reduce CU consumption

Pros
* Avoidsincreased cost
* Learning carries over to future content

Cons
* Can be difficult/time consuming



Org1 Prod
WSs

J

N

Org2 Prod
WSs

WSs = Workspaces

When Capacity Units Run Out
Option 4 — Isolate

Self Service
WSs

Dev/Test
WSs

Capacity

Approach
* Provide isolated capacity for key items built by
experienced developers

Pros

* Easy

* Provides isolation from items built by
inexperienced developers and/or rapid
unplanned usage growth

* Flexibility in capacity settings/governance

Cons

* Cost

* May lead to frustration of lower priority content
developers/consumers



Isolation Strategy #4a — Tryout Capacity

4 )

New .
ltem/Workspace Metrics

WSs
. y \ App

N —| | ,

Org1 Prod Self Service

Tryout/Test -
Capactty NOK Org2 Prod New
Optimize ltem/Workspace
\. J
Approach WSs = Work Prod Capaci
« Create a small F SKU capacity to “tryout” new workspaces/items S = VVorkspaces rod Capacity

* Assess CU consumption using metrics app

* If acceptable, move to prod capacity

* If not, optimize

* Pause tryout capacity when not in use, if possible
* Note size limits for semantic model size



Isolation Strategy #4b — Timeout Capacity

Approach
e ~ * Create a small F SKU capacity
* Assess CU consumption using metrics app
Self Servi * |f CUfor new items/workspaces affects existing workloads
Org1 Prod © Wgrwce (throttling), move WS to timeout capacity (Admin
WSs S Portal/Capacity Settings)
* High CU items/WSs share smaller capacity (or you can pause
\ ) \- it post move)
e 4 * Note size limits for semantic model size
Org2 Prod New _ _
e | Timeout Capacity
Metrics
A
\ PP New
WSs = Workspaces Prod Capacity fr\ & ltem/Workspace
W h
Do Nothing

igh CUWS 1 High CU WS §




Isolation Strategy #4c — Rescue Capacity

Approach
~ * Create an F SKU capacity, keep it paused

4 * Assess CU consumption using metrics app

* If CUfor new items/workspaces affects priority workloads
(throttling), resume the new capacity and move priority WS to
it (Admin Portal/Capacity Settings)

* Address issues with new content, then bring it back to original
capacity, and pause the new one

* Note size limits for semantic model size

Org1 Prod Selfvigrwce
WSs S

—

)

Org2 Prod New

ltem/Workspace Rescue Capacity
Metrics

\ App
WSs = Workspaces Prod Capacity fr\ -NOK
S wse
Do Nothing

.
4

Org1 Prod




Recommendations for Cost/CU Savings

* Invest in education, knowledge/best practice sharing, COE, etc. for
creators and consumers (proactive optimization)

 Avoid data/report sprawl (leverage certified/promoted models,
Onelake shortcuts, etc.)

 Leverage a multi-capacity strategy (isolate, tryout, timeout, etc.)

* Right size your capacities and leverage F SKUs for
nause/resume/resize, or reserved instances for discounts
 Consider a combo of Rl and PAYGO (for predictable surge activity)

* Choose the right tool for the job and stay up to date on Fabric feature
releases
» High concurrency mode for notebooks




Leverage the capacity settings in the Ul

* Notifications on CU overuse

» Power Bl workloads settings (e.g., query limits,

page refresh)

Capacity settings
Refresh summary
Embed Codes
Organizational visuals
Azure connections
Workspaces
Custom branding
Protection metrics
Featured content

Help + support

Your P1 SKU gives you access to 64 capacity
units.

b Disaster Recovery
> Capacity usage report
> Notifications

> Contributor permissions
Enabled for a subset of the organization

> Admin permissions
> Power Bl workloads
b Preferred capacity for My workspace

b Data Engineering/Science Settings

¥ Workspaces assigned to this capacity

4 Notifications

Get notified when you're close to exceeding your available capacity (which includes base and Autoscale v-cores).

Send notifications when

You're using % of your available capacity

‘You've excesded your available capacity and might experience slowdowns
\:‘ An Autoscale v-core has been added

\:‘ You've reached your Autoscale maximum

Send notifications to

Capacity admins

\:‘ These contacts:

‘ Enter email addresses

4 Power Bl workloads 1

SEMANTIC MODELS

QObserve XMLA-based workspace settings (which may override capacity settings)

@ o

Query Memory Limit (%)

Query Timeout (seconds)

Max Intermediate Row Count

Max Result Row Count

Max Offline Dataset Size (GE)

o]

Automatic page refresh
Cn
Minimum refresh interval

Seconds ¥

5

Change detection measure
@ o
Minimum execution interval

XMLA Endpoint




Custom Solutions
» Modify the Metrics App to meet your needs

] ] Collect data from multiple
* Build a custom report off the semantic model capacities and store it long term

Py Send DAX queries to the metrics a pp Sema ntic g f;?t max date from current delta table (to avoid loading duplicate days)

. . 1@ df_max = spark.sql(f'""
mOdel |n you r Own SOl utlon 11 SELECT MAX(Date) as MaxDate
12 FROM throttling;
13 e
» Power Automate, Notebook (SemPy), PowerShell, etc. 14 e - ot ottt ]
15 maxdate = df_max.first ‘MaxDate "
M (o) M M M M 16 except:
» Get throttling % values (Interactive Delay, Interactive Rejection, 7 ™ facae - dstetine.coday() + timedeltagasys—-c)
Q e 18 maxdateforDAX = maxdate.strftime( %Y,%m,%d")
and/or Background Rejection) 15
. 28 if maxdate.date() < (datetime.today() + timedelta(days=-1)).date():
* Latest values and/or trends over time 2
22 # Get data for each capacity, write daily csv and append delta
. 23 for capacity in lst_capacities:
* Best for summarized data only (e.g., hour, day) 24 qerytet =+
26 MPARAMETER "CapacityID' = "{capID}"
27 VAR yesterday =
28 FILTER(ALL( 'Dates'[Date] ), 'Dates"[Date] < TODAY() && 'Dates'[Date] > DATE({MD}) )
29
. . 38 EVALUATE
Incorporate Metrics App queries 1 SumARIZECOLMRS(
. . 32 'Dates’[Date],
into custom solutions 3 Timepoints*[Start of Hour],
s 34 yesterday,
B 35 "IntDelay™, ROUND( "All Measures'[Dynamic InteractiveDelay ¥] * 1ee, 2 ),
{J} DAY Query (‘3'_; e 36 "IntReject™, ROUND( "All Measures'[Dynamic InteractiveRejection ¥] * 1ee, 2 ),
37 "BackReject”, ROUND( 'All Measures®[Dynamic BackgroundRejection ¥] * 1ee, 2 )
' 35 )
L 39 "' . format(capID=capacity, MD=maxdateforDaX)
Wl 40 df_throttling = fabric.evaluate_dax(workspace=MetricsW5, dataset=MetricsModel, dax_string=querytext)
41 if len(df_throttling) »= 1:
ﬂ Query :E Sy 42 df_throttling.columns = df_throttling.columns.str.replace(r’(.*\[)|(\].*)", ', regex=True)
43 df _throttling.columns = df throttling.columns.str.replace(” ", '_")
44 df_throttling[ 'capacityld'] = capacity
“Workspace Cust salue p 45 filename = capacity + '_throttling " + (datetime.today()).strftime( '¥YEm¥d') + ".csv’
Lustom value 46 df_throttling.to_csv("/lakehouse/default/Files/ThrottlingData/" + filename)
47 spk_throttle = spark.createDataFrame(df_throttling)
* Dataset | Custom value o | j-: spk_throttle.write.mode( "append™).format("delta™).option("overwriteSchema™, "true").saveAsTable( Throttling')
T ——
*Query text Outputs X

Show advanced options



= .
—

Pause/Resume on
a Schedule

Automate With F SKUs

* Pause/resume on a schedule

« Automate with Power Automate, Logic Apps,
or a Notebook

* Resize at peak/slow times

* Mix with Reserved Instance (PAYGO when at
increased size)

* Query the metrics app and respond to actual
demand (DIY autoscale)



DIY Autoscale — Fabric Notebook

L= ¥ o IR Ry W Iy 5 [y ]

(Bret Myers)

Set SKU Ranges and Values

1 # Parameters to be passed in from pipeline.

2 minSku = 'F2" # min sku size we can scale down to

3 maxSku = 'F128' # max sku size we can scale up to

4 utilizationTolerance = 98 # Percentage of CU used to st
5 capacityMame = 'fabricbamdemo’ #capacity name to be mon
6 subscriptionld = 'kt
7 metricsAppWorkspacelame = "WS FabricCapacityMetrics' #

3 metricsAppModelName = 'Fabric Capacity Metrics® # name

g9 alertEmail = "' # email address to send alert that we s

Get credentials

tenantId = mssparkutils.credentials.getSecret(’'keyVaultEndpoint', "secretName_tenantId”)
clientId = mssparkutils.credentials.getSecret( " keyVaultEndpoint', "secretName clientId')
secret = mssparkutils.credentials.getSecret( keyVaultEndpoint', 'secretName clientSecret')

api_pbi = "https://analysis.windows.net/powerbi/api/.default’
api_azuremgmt = ‘https://management.core.windows.net/.default’

Not all code shown

FabricTools/CapacityAutoScale at main - bretamyers/FabricTools - GitHub

[
WD 0 s LT B L R e

=
b

[l il el
W o= o W P i

o
(=

1]
F

[
[

=

ol

19
28
21
22
23
24
25
26
27
28

Query metrics app model

from azuwre.identity Lmport ClientSecretlredential
import requests; json, math
from pyspark.sgl.functions import explode

auth = ClientSecretCradential{tenant_id=tenantId, client Sd=clientId, clienl_secret=secrel})
access token = auth.get_token(api_pbi}

header = { Authorization®: f'Bearer faccess token.tokeny' . "Content-type": "applicationfjson

body = {
‘queries™: |
i
“QueryT: "
DEFINE
MPARAMETER "CapacityID" = "{capacityTd}~

VAR _ DSBFLilterTable =
FILTER(
KEEPFILTERS (VALUES( "TimePoints " [ TimePolint ) ),

‘TimePolints " [TimePoint] »>= NOW()} - 1

VAR _ DSAFLlterTable? = TREATAS({{"{capacityTd}~}}, "Capacities"|capacityId])

VAR _ DS8Core =
SELECTCOLUMNS |
KEEPFILTERS(
FILTER(
KEEPFILTERS(
SUMMARTZ ECOLLMNS |
"Capacities” |capacityId];

"TEass ' TR TTakhla Feaal

Change SKU Size

url = f'https://management.azure.com/subscriptions/{subscriptionld}/resourceGroups/{res

body = {
"sku": {
"name": f"{scaleskul”,
"tier": "Fabric”
1
¥

response = requests.patch(url, headers=header, data=json.dumps(body))


https://github.com/bretamyers/FabricTools/tree/main/CapacityAutoScale

Most Common Capacity Issues (Power Bl)

Bad Practice Recommendations/Typical Resolution

Model issues (M:M, bi-di, shnowflake, etc.) Follow best practices (e.g., BPA), star schema

and/or inefficient DAX

Too many visuals Multi card, small multiples, Deneb, PowerPoint background, etc.

Big single visual (i.e., matrix with lots of rows, Improve report design (e.g., drillthrough, apply all Slicers,

columns, and/or measures) report page tooltip), field parameters, calc group guardrails,
etc.

Complex RLS Remodel to enable simple filter like Table[Email] =
USERPRINCIPALNAME()

Very high concurrency Optimize reports, DAX, etc. (big multiplier)
Consider QSO, data subsets

Direct Query Switch to import or Direct Lake, if possible. Aggregations,
hybrid tables, etc.

Analyze in Excel Automate downstream analytics with a Power Bl report instead,

subscriptions, DAX connected table, slicers/measures first, etc.

Excessive refresh Don't “"break the fold”, incremental refresh, reduce frequency,
optimize M code

58 Microsoft Fabric Community Conference 2024



Key

Save Those CUs — Getting Data Into Excel

Analyze in Excel

Power Bl Datasets Y

| 2 search for a dataset

m DemoSales

Workspace: PaginatedDemos

Owner: Patrick Mahoney
Refreshed: 2/22/2024, 11:45:46 AM

> Tables in this dataset (10);

> Reports using this set (2):

b Insert PivotTable b Insert Table

Connected Table

Takeaways
How you build it matters
- Filters & measures first!
This shows durations but it's CU that matters
(test your use cases/models)
Opt for DAX Connected Tables
- Create pivot table from that, if needed

StartTime

11:49:30
11:49:26
11:49:23
11:4917
11:48:03
11:48:54

Type
MDX
MEX
M
MO
MEX
MDX

Duration

2.328ms

Oms
Oms
1,875ms
4 468ms
3.938ms

User

Power BEl..
Power Bl...
Power Bl...
Power Bl...
Power Bl...

Power Bl...

Database

DemaoSales
DemoSales
DemoSales
DemoSales
DemoSales

DemoSales

Cuery

SELECT {[Measures].[To
SELECT {AddCalculated
SELECT {AddCalculated
SELECT {[Measures].[To
SELECT {[Measures].[To
SELECT {[Measures].[To

X Rows, Measures, Filter

L Filter, measures, rows

StartTime
10:06:13
10:06:03
10:05:49
10:05:46
10:05:43
10:05:14

Type
MDX
MDX
MDX
MDX
MDX
MDX

Refresh (same for both)

StartTime
11:50:30

Type
MDX 2234ms Power Bl..

X Rows, Measure, Filter

StartTime  Type
01:28:50  DaAX
01:2841  DaX
01:28:40  DAX
01:28:34 DAX
01:28:33 Dax
01:28:31 DAY
01:28:30  Dax
01:28:15 DA
01:28:11 Dax
01:28:08  DaX
012756 DAX
01:27:50 Dax

Duration  User Database
31ms Power Bl... DemcSales
1,516ms Power Bl... DemoSales
16ms Power Bl.. DemoSales
156ms Power Bl.. DemoSales
1oms PowerEl.. DemoSales
Omsz Power Bl... DemcSales
141ms Power Bl.. DemoSales
2047ms Power Bl... DemoSales
1,797ms Power Bl... DemoSales
594ms Power Bl.. Demo5ales
281ms Power Bl.. DemoSales
16ms Power Bl... DemoSales

StartTime Type
11:54:49 DAY

Duration

1,969ms= Power Bl...

Query

DEFINE VAR _L
DEFINE VAR _L
DEFINE VAR _L
DEFINE VAR _L
DEFINE VAR _C
DEFINE VAR _L
DEFINE VAR _C
DEFINE VAR _L
DEFINE VAR _L
DEFINE VAR _C
DEFINE VAR _L
DEFINE VAR _C

Duration User

Duration
1,625ms
781ms
109ms
312ms
234ms

Oms

User

Power Bl...
Power Bl...
Power Bl...
Power Bl...
Power Bl...

Power Bl...

Database

DemoSales
DemoSales
DemoSales
DemoSales
DemoSales

DemaoSales

Database  Query
DemoSales  SELECT {[Measures).[To
L Filter, measures,
StartTime Type Duration User Database
09:14:20 DAX 16ms Power Bl.. DemoSales
09:14:07 DAX 1,000ms Power Bl.. DemoSales
09:14:02 DaX  1,188ms Power Bl... DemoSales
09:13:59  Dax 594ms Power Bl.. Demobales
09:13:51 Dax 531ms Power Bl... DemoSales
02:13:50 DAX Oms Power Bl.. DemoSales

Refresh (same for both)

User

Databasze

DemoSales

Cuery
DEFIME VAR _DS0OFilterTable = TREATA

Cuery

SELECT {[Measuw
SELECT {[Measu
SELECT {[Measu
SELECT {[Measu
SELECT FROM [b
SELECT {AddCals

F'Ows

Query

DEFINE VAR __DSOFilte
DEFINE VAR _DSOFilte
DEFINE VAR __DSOFilte
DEFINE VAR _DSOFilte
DEFINE VAR __DSOFilte
DEFINE VAR DS0OCor









	Slide 1: Understanding Fabric Capacities
	Slide 2: Premium sponsors
	Slide 3
	Slide 4: Benni De Jagere
	Slide 5: Fabric Capacities Introduction
	Slide 6
	Slide 7: Capacities are to Fabric what CPUs are to PCs
	Slide 8: Capacities are a shared resource
	Slide 10
	Slide 11: Provisioning and Deploying Capacities
	Slide 12: Provisioning and Deploying Capacities
	Slide 13: Bursting and Smoothing
	Slide 14
	Slide 15: What is Bursting?
	Slide 16: Bursting and smoothing | before and after
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Monitoring with Capacity Metrics
	Slide 22: Capacity Metrics
	Slide 23: Capacity Metrics
	Slide 25: Capacity Throttling Policies
	Slide 26
	Slide 27
	Slide 28: Capacity Planning  with Capacity Metrics 
	Slide 29: Capacity planning case study - measurement
	Slide 30: Capacity planning case study – SKU selection
	Slide 31: Pausing and Resuming Capacities
	Slide 32: Introduction to Pausing and Resuming Capacities
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 42: Bonus: Tips and Tricks for capacity management and monitoring
	Slide 44: My capacity is being throttled! What can I do?
	Slide 46: When Capacity Units Run Out Option 1 – Scale Up
	Slide 47: When Capacity Units Run Out Option 2 – Scale Out
	Slide 48: When Capacity Units Run Out Option 3 – Optimize
	Slide 49: When Capacity Units Run Out Option 4 – Isolate
	Slide 50: Isolation Strategy #4a – Tryout Capacity
	Slide 51: Isolation Strategy #4b – Timeout Capacity
	Slide 52: Isolation Strategy #4c – Rescue Capacity
	Slide 53: Recommendations for Cost/CU Savings
	Slide 54: Leverage the capacity settings in the UI
	Slide 55: Custom Solutions
	Slide 56: Automate With F SKUs
	Slide 57
	Slide 58: Most Common Capacity Issues (Power BI)
	Slide 59
	Slide 60: Session Feedback
	Slide 61: Thank you

