
Understanding
Fabric Capacities

CAT

Benni De Jagere

Slides

Premium sponsors

Standard sponsors

Raffle Prizes

Benni De Jagere
Senior Program Manager | Fabric Customer Advisory Team (FabricCAT)

Fabric CAT

.be Member

@BenniDeJagere

/bennidejagere

/bennidejagere

/bennidejagere

#SayNoToPieCharts

Fabric Capacities
Introduction

Onboarding and trials

Sign-on

Navigation model

UX model

Workspace organization

Collaboration experience

Data Lake

Storage format

Data copy for all engines

Security model

CI/CD

Monitoring hub

Governance & Capacity Metrics

Data Hub

Single…

Microsoft Fabric

AI Assisted

Shared Workspaces

Universal Compute Capacities

One Security

OneLake

Synapse Data

Warehouse

Synapse Data

Engineering

Synapse Data

Science

Synapse Real

Time Analytics
Power BI

Intelligent data foundation

Data

Factory

Data

Activator

Capacities are to Fabric what CPUs are to PCs

When you purchase a PC you

choose the number of CPU cores.

The more CPU cores the more

load the PC can handle.

In Fabric, you provision a

Capacity with a number of

“capacity units”. The more

capacity units provisioned, the

more compute load handled.

Unlike the PC, capacity units can

be scaled up or down as needed.

The CPU cores are dynamically

shared across all applications

with no need to pre-allocate by

app.

The capacity units are

dynamically shared across all the

Fabric workloads, with no pre-

allocation necessary.

A single capacity can

simultaneously drive BI, DW,

Spark, ML and every other

compute engine in Fabric

The total consumption of the

CPU across all the apps cannot

exceed the number of cores. CPU

overload causes a slowdown.

The total consumption of the

capacity across all the workloads

cannot exceed the capacity units

provisioned.

Overloading the capacity will

throttle it (slow down).

Auto scale can dynamically

increase the available compute

units avoiding the slowdown.

Personal

Computing

Fabric

Capacities

Capacities are a shared resource

Shared across users
For each project, many developers will share a
workspace where collaborative development and
consumption at scale is managed.

Each creator can provision any artifact and run any
job without the need for any pre-approval or
planning

Workspace

Developers/Creators Consumers

Shared Across Projects
A single capacity typically supports dozens of
separate projects simultaneously, each managed in
its own workspace.

It is rare to have a capacity dedicated to a single
project

Shared across workloads
A single capacity is providing the compute power for
all Fabric workloads.

There is no need to allocate compute for each
workload separately.

Synapse Data

Warehouse

Synapse Data

Engineering

Synapse Data

Science

Synapse Real

Time Analytics
Power BI

Data

Factory

Data

Activator

Capacities can be configured in endless ways to meet scale, usage and governance requirements while tuning to minimize TCO
and performance goals

64 CU’s

Regional Availability

Use different capacities for different
regions to support GDPR / Data

residency requirements

Region:
UK South

Region:
France Central

Region:
Sweden Central

F16
Capacities

Scale Vertically

Increased capacity size provides
more throughput

F8 Capacity

F16 Capacity

F64 Capacity

8 CU’s

16 CU’s

Scale Horizontally

Scale horizontally using the benefits of
modular design for hardened isolation

and governance

Development

Test / “Tryout”

Prod

F16
Capacities

F128
Capacity

Capacities are flexible building blocks for growth

2048

.

.

.

.

Provisioning and Deploying Capacities

• Purchased either as a PAYG or RI resource

• Provisioned with a certain amount of
compute units, analogous to CPU cores.

• The more capacity units are provisioned,
the more load the capacity can support

• Multiply SKU size by 30s to match platform
evaluation in metrics app

• Capacities are priced at a fixed hourly rate,
based on capacity units provisioned

• The RI commitment (1-year reserved
instance) enjoys a 41% discount

Purchased in Azure

SKU Capacity
Units (CU)

CU’s
(per 30s)

Power BI
SKU

Power BI
V-cores

F2 2 60 - 0.25

F4 4 120 - 0.5

F8 8 240 A1 1

F16 16 480 A2 2

F32 32 960 A3 4

F64 64 1920 P1 8

F128 128 3840 P2 16

F256 256 7680 P3 32

F512 512 15360 P4 64

F1024 1024 30720 P5 128

F2048 2048 61440 - 256

Universal Compute Capacities SKU Sizing

• Each capacity resides in a specific region
of the buyers’ choice where both the
data & compute reside

• Workspaces are assigned to a capacity
that provides the compute and storage for
all the workspace artifacts

• Multiple capacities can be purchased,
deployed and managed by different
owners residing in a single tenant allowing
each business unit to pay for their own
consumption

Deployed to Regions

Tenant (Microsoft)

Capacity 1 (West Europe)

Workspace 1
(Data Science Team)

Workspace 2
(Research)

Item 1
Power BI

Semantic Model

Item 2
AI Function
Evaluation

Item 3
Spark Notebook

Item 4
ML Dataflow

Capacity 2 (Central India)

Capacity 3 (West US)

Provisioning and Deploying Capacities

Bursting and
Smoothing

Smoothing intro and benefits

Smoothing helps capacities self-stabilize by
flattening large spikey loads into a smooth load
profile, eliminating temporal spikes

Load stabilization

Large/scheduled Jobs usage (not execution) are
smoothed over 24 hours, eliminating the need to
decide the timing and order of job execution

Eliminates Scheduling

contention

Interactive operations smoothed over several
minutes, preventing a single user with a very
demanding query from hogging the entire
capacity

Bad actor protection

What is Bursting?

Job acceleration

Bursting provides extra compute

resources to jobs and queries to

accelerate their completion

The extra resources of bursting

allow jobs to utilize far more

resources than “face value”

Instead of running a job on 64

CU and completing in 60

seconds, bursting could use 256

CUs to complete the job in 15

seconds.

Same amount of work, just

completed faster

Bursting is automatic when the

system reasons it can accelerate

the job by applying extra

resources. No settings are

required.

Bursting prevents an overload

as the smoothing mechanism

will always flatten the resource

burst

Go

beyond

No hassle,

No overload

Bursting and smoothing | before and after
Looking at an example of a 64 CU capacity, running multiple workloads over a couple of days…

• Actual load as executed on the capacity before smoothing

• Bursting accelerates jobs execution by resource boosting

• The capacity could be overloaded 25% of the time

• Some of the overloads are more than 2x the limit

• There are periods of no/low usage

Before Smoothing

• Shows the reported load (not runtime execution) against

the capacity limits

• There is NO overload, and consumption is more stable

• The smoothing of usage fills in gaps

After Smoothing

Bursting and Smoothing

1 2

3

• Regardless of SKU, Fabric bursting will automatically allocate

resources as needed to execute at maximum performance

• As such, one query could consume all the quota of a single time

window and much more!

• To avoid an overload, smoothing kicks in

Jobs Executed

64 CUs

1

2

3

• No one (or few) queries can trigger an overload

• Instead of allowing runaway queries to create a local overload,

Fabric smooths the queries reported usage to future time windows

• Kind of “Buy now, pay in the future” installment plan

Actual execution

Reported load on CUs

64 CUs

Bursting and Smoothing

1

2

3

• Large batch processes traditionally were a threat to interactive

queries as they would overload the compute resource

• DBAs traditionally had to carefully schedule these jobs to off-

hours to avoid interference with interactive user experiences

4 – large batch job

64 CUs

Bursting and Smoothing

64 CUs

1

2

3

• A similar “installment plan” logic is applied for batch jobs

• But for batch jobs the smoothing is applied uniformly for the next

24 hours

• This completely liberates the DBA from any consideration of job

scheduling. The load will be uniform regardless of the schedule.

• Most importantly, regardless of when batch jobs are scheduled,

there will not be any degradation on interactive query performance

4 – large batch job

24 hours smoothing

Actual

execution

Reported CU

consumption:

Bursting and Smoothing

Monitoring with
Capacity Metrics

• Tenant wide visibility into
capacity usage for all Fabric
experiences

• Identify resource usage trends
and their impact to autoscale &
throttling

• View preview workload usage
alongside production workloads
to make data-driven capacity
sizing decisions

Capacity Metrics

Monitor Capacities and
Plan capacity scale-up
with confidence

Measure the trends of workspace
storage consumption against
capacity limits, by day or hour

Reconcile costs with internal
chargeback processes

Capacity Metrics

Monitor OneLake
consumption

Capacity Throttling
Policies

Throttling intro

• Throttling is the platform policy for managing
consumption that exceeds throughput is
provided by SKU choice

• When workloads exceed the throughput of a
capacity a cumulative debt is tracked to be
burned down

• Cumulative debt is used to determine throttling
policies and is burned down when resources are
free

Overage Operation Description

Overages - Added

• Timepoint when job requests exceed the throughput
of a capacity, overages are was added to the
cumulative buffer to burn down.

• This graph simplifies identification of the optimal
timepoint to load timepoint drill to analyze the user
operations that contributed to an overage.

Overages -
Burndown

• Overages being reconciled when future capacity is free
to burn down

Overages -
Cumulative

• The total amount of queued work on the capacity to
be burned down in the future when the capacity is not
fully utilized

Smoothed Capacity -
Future Use

Platform Policy Customer Impact

<= 10m
Overage
Protection

Jobs can consume 10 minutes of future capacity use
without throttling

> 10m → <= 60m Interactive Delay User requested interactive type jobs will be throttled

> 60m → <= 24h
Interactive
Rejection User requested interactive type jobs will be rejected

> 24h
Background
Rejection

User Scheduled background jobs will be rejected from
execution

• For Fabric, throttling policies were refined to
deliver multiple benefits
• Reduced throttling for capacities that only experience

occasional spikes
• Added overage protection – rejection policies prevent

overloaded capacities from irrecoverable overload
• Optimizations for long-running jobs: We're optimizing

the platform for long-running jobs, so if a job exceeds
capacity limits, it will run to completion and the overage
will be burned down against future capacity

Capacity throttling evolution for Fabric

Capacity Planning
 with Capacity Metrics

Start with a test or trial capacity to
evaluate the load of specific Fabric
Experiences i.e., Power BI Datasets,

Spark Notebooks or a
Datawarehouse

If usage is above the
current capacity limits ,

choose the desired
utilization rate to
accommodate via
capacity scale up

Load Capacity Metrics timepoint drill to analyze :
• Total CU’s consumed : 749 CU(s)
• Capacity Size : (F2)
• CU(s) available on your capacity : 60 CU(s)

Capacity planning case study - measurement

To accommodate a 749 CU(s)
load the admin can purchase an
F32 capacity providing 960 CU(s)
of throughput

Capacity planning case study – SKU selection

SKU Capacity
Units (CU)

CU’s
(per 30s)

Power BI
SKU

Power BI
V-cores

F2 2 60 - 0.25

F4 4 120 - 0.5

F8 8 240 A1 1

F16 16 480 A2 2

F32 32 960 A3 4

F64 64 1920 P1 8

F128 128 3840 P2 16

F256 256 7680 P3 32

F512 512 15360 P4 64

F1024 1024 30720 P5 128

F2048 2048 61440 - 256

Universal Compute Capacities SKU Sizing

Pausing and Resuming
Capacities

Overview and Benefits

Introduction to Pausing and Resuming Capacities

Pause and Resume lets you manage compute costs on F SKU capacities by
suspending the execution of all workloads running on the capacity

• When a capacity administrator pauses a capacity:

Note: OneLake storage will remain active and billable while a capacity is paused

Workloads stop
execution

New requests are
not run

Smoothed usage
will be reconciled

(details in the next demo)

Bursting and

1 2

3

• Job execution in Fabric workloads happens on-demand via

capacity powered compute engines

• Fabric bursting will automatically allocate resources as needed to

execute at maximum performance

Jobs Executed

64 CUs

Smoothing

1

2

3

• The Fabric capacity platform smooths usage out to reduce

throttling which can occur when demand exceeds the throughput

of the capacity that was purchased

Actual

execution

Reported load on CUs

64 CUs

Bursting and Smoothing

and Paused Capacities

• When a capacity is

64 CUs

Pause event on

Capacity

paused…

Smoothing

• Usage that was smoothed into the future will be “reconciled” and

charged against the capacity at the timestamp the capacity was

paused

64 CUs

• Reconciled usage will show up as a spike in capacity metrics

Pause event on

Capacity

• When a capacity is paused…

and Paused CapacitiesSmoothing

• Usage that was smoothed into the future will be “reconciled” and

charged against the capacity at the timestamp the capacity was

paused

64 CUs

Pause event on

Capacity

• When a capacity is paused…

• Pause events can be viewed in the new System events tab

and Paused CapacitiesSmoothing

timestamp is shown in the smoothing end field in

timepoint drill views

• Usage that was smoothed into the future will be “reconciled” and

charged against the capacity at the timestamp the capacity was

paused

64 CUs

Pause event on

Capacity

• When a capacity is paused…

• Pause events

and Paused CapacitiesSmoothing

Bonus: Tips and Tricks
for capacity
management and
monitoring

My capacity is being throttled! What can I do?

Microsoft Fabric Community Conference 202444

Over 100% utilization doesn’t
always result in throttling

No penalty until you hit 100%
on one of the throttling tabs

Note: For F SKU, if throttled, you can pause/resume
to pay now and clear the carry forward, but that is

not a long-term solution

When Capacity Units Run Out
Option 1 – Scale Up

WSs = Workspaces

Org1 Prod
WSs

Org2 Prod
WSs

Self Service
WSs

Dev/Test
WSs

Capacity

Options to add compute
• Move to a bigger P SKU or RI F SKU
• Turn on autoscale (P SKU)
• Manual/Dynamic change size (F SKU)

Pros
• Add CUs for all items
• Easy

Cons
• Cost
• Bad actors (items with unintentionally high CU

burn) can still be a problem

When Capacity Units Run Out
Option 2 – Scale Out

WSs = Workspaces Capacity

Org1 Prod
WSs

Org2 Prod
WSs

Self Service
WSs

Dev/Test
WSs

Options
• Create multiple smaller P or F SKUs based on

organization, type of work, etc.

Pros
• Easy
• Provides some isolation from bad actors (items

with unintentionally high CU burn)
• Flexibility in capacity settings/governance

Cons
• Cost
• High CU items have increased chance of

throttling

When Capacity Units Run Out
Option 3 – Optimize

WSs = Workspaces

Org1 Prod
WSs

Org2 Prod
WSs

Self Service
WSs

Dev/Test
WSs

Capacity

Approach
• Work with content creators to follow best

practices and reduce CU consumption

Pros
• Avoids increased cost
• Learning carries over to future content

Cons
• Can be difficult/time consuming

Org1 Prod
WSs

Org2 Prod
WSs

Self Service
WSs

Dev/Test
WSs

When Capacity Units Run Out
Option 4 – Isolate

Approach
• Provide isolated capacity for key items built by

experienced developers

Pros
• Easy
• Provides isolation from items built by

inexperienced developers and/or rapid
unplanned usage growth

• Flexibility in capacity settings/governance

Cons
• Cost
• May lead to frustration of lower priority content

developers/consumers
WSs = Workspaces Capacity

Org1 Prod
WSs

Org2 Prod
WSs

Self Service
WSs

Dev/Test
WSs

Isolation Strategy #4a – Tryout Capacity

Approach
• Create a small F SKU capacity to “tryout” new workspaces/items
• Assess CU consumption using metrics app
• If acceptable, move to prod capacity
• If not, optimize
• Pause tryout capacity when not in use, if possible
• Note size limits for semantic model size

New
Item/Workspace

Tryout/Test
Capacity

OK
NOK

Optimize

WSs = Workspaces

Org1 Prod
WSs

Org2 Prod
WSs

Self Service
WSs

Prod Capacity

New
Item/Workspace

Metrics
App

Isolation Strategy #4b – Timeout Capacity

WSs = Workspaces

Org1 Prod
WSs

Org2 Prod
WSs

Self Service
WSs

Prod Capacity

Approach
• Create a small F SKU capacity
• Assess CU consumption using metrics app
• If CU for new items/workspaces affects existing workloads

(throttling), move WS to timeout capacity (Admin
Portal/Capacity Settings)

• High CU items/WSs share smaller capacity (or you can pause
it post move)

• Note size limits for semantic model size

New
Item/Workspace

Timeout Capacity

NOK

OK

Do Nothing

New
Item/Workspace

High CU WS 1 High CU WS 2

Metrics
App

Isolation Strategy #4c – Rescue Capacity

WSs = Workspaces

Org1 Prod
WSs

Org2 Prod
WSs

Self Service
WSs

Prod Capacity

Approach
• Create an F SKU capacity, keep it paused
• Assess CU consumption using metrics app
• If CU for new items/workspaces affects priority workloads

(throttling), resume the new capacity and move priority WS to
it (Admin Portal/Capacity Settings)

• Address issues with new content, then bring it back to original
capacity, and pause the new one

• Note size limits for semantic model size

Rescue Capacity

NOK

OK

Do Nothing

New
Item/Workspace

Metrics
App

Org1 Prod
WSs

Recommendations for Cost/CU Savings

• Invest in education, knowledge/best practice sharing, COE, etc. for
creators and consumers (proactive optimization)

• Avoid data/report sprawl (leverage certified/promoted models,
OneLake shortcuts, etc.)

• Leverage a multi-capacity strategy (isolate, tryout, timeout, etc.)
• Right size your capacities and leverage F SKUs for

pause/resume/resize, or reserved instances for discounts
• Consider a combo of RI and PAYGO (for predictable surge activity)

• Choose the right tool for the job and stay up to date on Fabric feature
releases
• High concurrency mode for notebooks

Leverage the capacity settings in the UI

• Notifications on CU overuse

• Power BI workloads settings (e.g., query limits,
page refresh)

Custom Solutions
• Modify the Metrics App to meet your needs

• Build a custom report off the semantic model

• Send DAX queries to the metrics app semantic
model in your own solution
• Power Automate, Notebook (SemPy), PowerShell, etc.
• Get throttling % values (Interactive Delay, Interactive Rejection,

and/or Background Rejection)
• Latest values and/or trends over time
• Best for summarized data only (e.g., hour, day)

Active only
weekdays 1st shift

Incorporate Metrics App queries
into custom solutions

Collect data from multiple
capacities and store it long term

Automate With F SKUs

• Pause/resume on a schedule
• Automate with Power Automate, Logic Apps,

or a Notebook

• Resize at peak/slow times
• Mix with Reserved Instance (PAYGO when at

increased size)
• Query the metrics app and respond to actual

demand (DIY autoscale)

Pause/Resume on
a Schedule

DIY Autoscale – Fabric Notebook
(Bret Myers)

Set SKU Ranges and Values

Get credentials

Query metrics app model

Change SKU Size

Not all code shown
FabricTools/CapacityAutoScale at main · bretamyers/FabricTools · GitHub

https://github.com/bretamyers/FabricTools/tree/main/CapacityAutoScale

Most Common Capacity Issues (Power BI)

Microsoft Fabric Community Conference 202458

Bad Practice Recommendations/Typical Resolution

Model issues (M:M, bi-di, snowflake, etc.)
and/or inefficient DAX

Follow best practices (e.g., BPA), star schema

Too many visuals Multi card, small multiples, Deneb, PowerPoint background, etc.

Big single visual (i.e., matrix with lots of rows,
columns, and/or measures)

Improve report design (e.g., drillthrough, apply all Slicers,
report page tooltip), field parameters, calc group guardrails,
etc.

Complex RLS Remodel to enable simple filter like Table[Email] =
USERPRINCIPALNAME()

Very high concurrency Optimize reports, DAX, etc. (big multiplier)
Consider QSO, data subsets

Direct Query Switch to import or Direct Lake, if possible. Aggregations,
hybrid tables, etc.

Analyze in Excel Automate downstream analytics with a Power BI report instead,
subscriptions, DAX connected table, slicers/measures first, etc.

Excessive refresh Don’t “break the fold”, incremental refresh, reduce frequency,
optimize M code

 Filter, measures, rows Rows, Measures, Filter

Save Those CUs – Getting Data Into Excel

Analyze in Excel

Connected Table

 Filter, measures, rows

 Rows, Measure, Filter

Refresh (same for both)

Refresh (same for both)

Key Takeaways
- How you build it matters

- Filters & measures first!
- This shows durations but it’s CU that matters

(test your use cases/models)
- Opt for DAX Connected Tables

- Create pivot table from that, if needed

Session Feedback

https://github.com/BenniDeJagere/Presentations/{Year}/{YYYYMMDD}_{Event}

Slides

Thank you

	Slide 1: Understanding Fabric Capacities
	Slide 2: Premium sponsors
	Slide 3
	Slide 4: Benni De Jagere
	Slide 5: Fabric Capacities Introduction
	Slide 6
	Slide 7: Capacities are to Fabric what CPUs are to PCs
	Slide 8: Capacities are a shared resource
	Slide 10
	Slide 11: Provisioning and Deploying Capacities
	Slide 12: Provisioning and Deploying Capacities
	Slide 13: Bursting and Smoothing
	Slide 14
	Slide 15: What is Bursting?
	Slide 16: Bursting and smoothing | before and after
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Monitoring with Capacity Metrics
	Slide 22: Capacity Metrics
	Slide 23: Capacity Metrics
	Slide 25: Capacity Throttling Policies
	Slide 26
	Slide 27
	Slide 28: Capacity Planning with Capacity Metrics
	Slide 29: Capacity planning case study - measurement
	Slide 30: Capacity planning case study – SKU selection
	Slide 31: Pausing and Resuming Capacities
	Slide 32: Introduction to Pausing and Resuming Capacities
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 42: Bonus: Tips and Tricks for capacity management and monitoring
	Slide 44: My capacity is being throttled! What can I do?
	Slide 46: When Capacity Units Run Out Option 1 – Scale Up
	Slide 47: When Capacity Units Run Out Option 2 – Scale Out
	Slide 48: When Capacity Units Run Out Option 3 – Optimize
	Slide 49: When Capacity Units Run Out Option 4 – Isolate
	Slide 50: Isolation Strategy #4a – Tryout Capacity
	Slide 51: Isolation Strategy #4b – Timeout Capacity
	Slide 52: Isolation Strategy #4c – Rescue Capacity
	Slide 53: Recommendations for Cost/CU Savings
	Slide 54: Leverage the capacity settings in the UI
	Slide 55: Custom Solutions
	Slide 56: Automate With F SKUs
	Slide 57
	Slide 58: Most Common Capacity Issues (Power BI)
	Slide 59
	Slide 60: Session Feedback
	Slide 61: Thank you

