Premium sponsors

dataon twoday

+ exmon |cllonwaind

Standard sponsors

@ @o=n INVIXO INSPARI packstage Bl

EEEEEEEEEEEEEEEEEEE

Raffle Prizes

Enhancing your Fabric Warehouse with dbt

Sean Douglas Thomsen
Business Intelligence Solution Architect @ LINAK
sdt@linak.com

X dbt

Introduction to Tests Contracts Documentation Deployment
dbt

Introduction

to dbt

Data build tools

Open-source framework for data transformations
within data warehouses.

Only does the T in ETL
Focuses on transformations using SQL, automates DDL

Brings software development best practices to data
engineering

 Version control

* Testing

« Code reusability
dbt is written in Python =» works well in CI/CD
Data never leaves our data warehouse!

Huge community >30.000 customers

Introduction to dbt

X dbt Labs

e Open Source e Commercial
e Free to use Product
This session only e Command line e Browser IDE
discusses dbt-core .
foatures only e Job scheduling
e ClI/CD

e Documentation
hosting

Adapters

AlloyDB

¥ Set up in dbt Cloud

¥ |nstall with dbt Core

pypi package |1.7.2

Postgres

¥ Set up in dbt Cloud
¥ |nstall with dbt Core

pypi package |1.7.2

g

=

Starburst/Trino

¥ Set up in dbt Cloud
¥ |nstall with dbt Core

pypi package | 1.7.0

o
BigQuery

¥ Setupin dbt Cloud

¥ |nstall with dbt Core

pypi package |1.7.2

Redshift

¥ Set upin dbt Cloud
¥ |nstall with dbt Core

pypi package | 1.7.0

L

Microsoft Fabric

¥ Set up in dbt Cloud
¥ |nstall with dbt Core

pypi package | 1.7.0

Databricks

¥ Setup in dbt Cloud

¥ Install with dbt Core

pypi package | 1.7.1

AYe

¥
Snowflake

¥ Set up in dbt Cloud
¥ |nstall with dbt Core

pypi package |1.7.0

$J

Azure Synapse

¥ [nstall with dbt Core

pypi package | 1.4.0

#% \erification in progress

(?"
Dremio

Hnstall with dbt Core

pypi package |1.5.0

Spark

M Set up in dbt Cloud
M |nstall with dbt Core

pypi package |1.7.1

Lt

Teradata

¥ [nstall with dbt Core

pypi package | 1.6.7

dbt is templating engine

We write SQL templates using jinja
SQL templates are compiled to runnable Compiled SQL is executed on target

and configuration and metadata using code during build platform

YAML

Model: A select statement

Materialization: How should a model
be created in target (table, view etc)

dbt

terminology Source: External data

Exposure: Downstream use of
models outside of dbt

dbt > models »> marts > latest_inventory_movement.sqg|

inventtrans

*
ref(con_inventtrans')

}J

inventtable

Models are ‘i *
defined in o
SQL » inventtable.primaryvendorid

, CAST(MAX(inventtrans.datephysical latest datephysical
inventtrans

ref(con_inventtable’)

inventtable inventtrans.itemid = inventtable.itemid
inventtrans.dataareaid = inventtable.dataareaid
inventtable.id,
inventtable.primaryvendorid

Macros — ref()

* Ref() is used to reference models in our project

* By using ref() we do not have to rewrite downstream models when we move target
schemas

9M0d8| names need to be unique in dbt dbt > models > marts > latest_inventory_movement.sq|
inventtrans
=>» Ref() used to build a DAG

i

r'Le-F |: - COmM N T

)

inventtable

(

E

We can add our own custom macros

11 safe divider('custinvoicetra: unt', "custinvoicetrans.qgty") }} amount per unit
custinvoicetrans

custinvoicejour custinvoicejour.dataareaid = custinvoicetrans.dataareaid

dbt Iabs recommends hot %- macro safe divider(column_name, column_name2) -%}

going overboard with {{column_name2}} <> 8 {{column_name}} / {{column_name2}}
- {%- endmacro -%}

macros. Favor readability

over strict DRY adherence

(Don’t repeat yourself)

Jcustinvoicetrans. lineamount salescur
custinvoicetrans.qty <> 8 custinvoicetrans.lineamount / custinvoicetrans.qty amount per unit

custinvoicetrans

DAG enables...

* Table lineage

e Execution order e ~' Sn— —

* Graph operators

Select on: models,
sources,
exposures, tags,
path, states,
configs...

assert_invoiced_amount_s_postive

_inventtransorigin

All selected All selected

Update Graph X

PS C:\Users\sdtisource\repos\msbididbt> dbt run stg ax1?2 custinvoicejour+
Running with dbt=1.8.8

Registered adapter: fabric=1.8.6

Found 22 models, 1 snapshot, 8 data tests, 1 seed, 16 sources, 1 exposure, 567 macros

Concurrency: 16 threads (target="fabric-dev')

d bt_ 1 :53: of 3 START sql view model dbo.stg ax12 custinvoicejour
CO re I S a :53: of 3 OK created sql view model dbo.stg ax12 custinvoicejour
:53: of 3 START sql view model dbo.con custinvoicejour
of 3 OK created =sql view model dbo.con custinvoicejour

CO m m a n d of 3 START sgl table model dbo.f sales_inw

of 3 OK created sql table model dbo.f sales inwv

| I n e tO O | :53: Finished running 2 view models, 1 table model in @ hours @ minutes and 19.27 seconds (19.27s).

Done. PASS=3 WARN=8 ERROR=8 SKIP=8 TOTAL=3
PS C:\Users\sdt\source\repos\msbid\dbt> ||

Side note: dbt vs Databricks Jobs

Dataproduct_on_a

intermediate_table A
o NO DAG O ..ers/sdi@linak.com/Dataproduct on A

O .&fsdi@linak.com/intermediate table A
i Job cluster
s Job_cluster

e Data products on different

schedules required hand crafted
jObS intermediate_table B

B O

Dataproduct_on_A_and_B
. . . G ..t@linakcom/Dataproduct on A and B
O ..s/=dt@linak.com/fintermediate table B

i Job_cluster

+ Add task

i Job_cluster

for inventory wvaluation”

["sdti@linak.com’]

Models are

describead :
with YAML

Data tests in dbt

Implemented as SQL queries

Fail when query returns rows

Tests can have different severities

Executed after model has been materialized

=» Bad data can be in model accessible by users

Generic Tests

¢ SQL Tem plateS dbt-core / core / dbt / include / global_project / macros / generic_test_sql / unique.sql (3
’ 4 generlc teStS dre InCIUdEd % iknox-fa Reformat core [CT-104 CT-105] (#4697) oB

* Unique

i NOt nu” | Code | Blame 12 lines (9 loc) - 243 Bytes - ()

* Accepted values
* Relationships

{% macro default__test_unique(model, column_name) %}

select

{{ column_name }} as unigue_field,

1
2
3
* More can be added manually or 5 count(*) 5 n_recorcs
by packages .

from {{ model }}
where {{ column_name }} iz not null
group by {{ column_name }7}

18 having count(*) > 1

11

12 1% endmacro %}

Adding a generic test

; movement by itemid used for inventory valuation”

itemid unique field,
count({*) n_records

"'msbid warehouse
itemid
= LI itemid
primaryvendori count(*) > 1
string

latest_inventory_mov

"Latest date of Physical Inventory”

Generic Test

concat(dataareaid, recid)
count(*)

unique field,
n_records

'msbid_war

concat{dataareaid, recid)

count(*) >

concat{dataareaid, recid)
> 1

Generic Tests from dbt_utils

dbt_expectations
contains dozens of
tests inspired by
Great Expectations

Some templates
use unsupported
SQL syntax on
Fabric

Generic Tests

equal_rowcount (source)

Asserts that two relations have the same number of rows.

Usage:

version: 2

models:
- name: model name
tests:
- dbt_utils.equal_rowcount:

compare _model: ref(’other table name')

This test supports the group by columns parameter; see Grouping in tests for details.

Custom Generic Test

» tests test_date_is_not_in_future.sg

% macro test date is not in future(model, column_name

{{ model }}

{{ column name }} > getdate()

% endmacro &}

Singular Tests — Work only on a specific model

dbt > tests > assert_invoiced_amount_i1s_positive.sql

involceid,
sum(salescur) total amount

{{ ref('+ sales inv")}}
involceld
sum(salescur) < @

Generic Version of Singular Test

dbt > macros > tests test_aggregated_amount_by_columns_is_positive

{% macro test_aggregated_amount_by_columns_is positive(model, group_ by column_name, aggregation_column_name) %}

{{ group by column_ name }},
sum({{ aggregation_column_name }}) total amount
{{ model}}
{{ group by column name }}
sum{ {{ aggregation column _name }} } < B

{% endmacro %}

Unit Tests

 Brand new feature

* Instead of testing on data in warehouse we test on well defined data with a known
result

* Are we sure that the logic to find the start of fiscal year always works?

stg sales invoices
invoicedate
{{ ref{"stg sales invoices")

invoicedate

DATEPART (sinvoicedate) < 7
DATEFROMPARTS({YEAR(DATEADD ,-1,invoicedate 2751)
DATEFROMPARTS(YEAR(invoicedate),7,1)
FiscalYearStart
stg sales invoices

Unit Tests

: 2828-86-38}
: 2828-87-81}
: 2828-12-31}
: 2828-91-01}

: 2828-86-39,
: 2828-87-01,
: 2828-12-31,
: 2828-81-901,

2819-87-01}
28208-87-01}
28208-87-01}
2819-87-81}

Known edge cases

Expected result

Contracts

e Data platforms are used by down stream applications
* Any changes to data shapes may break integrations

* Contracts define and enforce a specified data shape

/>

for inventory wvaluation”

["sdti@linak.com’]

Contracts

are specified _
in YAML

Contracts are enforced by platform

[dbo].[latest_inventory_movement] [dbo].[latest_inventory_movement] (
itemid 38

,primaryvendorid 38

,latest datephysical

)

=

'dbo].[latest_inventory movement temp view]

[dbo].[latest_inventory movement] (

[itemid]
, [primaryvendorid]
,[latest_datephysical]
)
[itemid]
, [primaryvendorid]
,[latest_datephysical]
[dbo].[latest_inventory movement temp view];

Breaking contracts causes failure

(dbt-core) PS C:\Users\sdt\source\repos\msbid\dbt> dbt build latest inventory movement
:25:43 Running with dbt=1.8.8
:25: Registered adapter: fabric=1.8.4
:25: Found 22 models, 1 snapshot, 6 data tests, 1 seed, 16 sources, 1 exposure, 449 macros
:25:
:25:47 Concurrency: 16 threads (target="fabric-dev’)
:25:47
:25:47 1 of 3 START sql table model dbo.latest inventory movement
:25:52 1 of 3 ERROR creating sgl table model dbo.latest inventory movement in 4.71s]
:25:52 2 of 3 SKIP test date is not_in future latest inventory movement latest inventory movement [SKIP]
:25:52 3 of 3 SKIP test unique latest inventory movement itemid
:25:52
:25:52 Finished running 1 table model, 2 data tests in @ hours @ minutes and 7.55 seconds (7.55s5).
:25:52
:25:52
9552
:25:52 Compilation Error in model latest inventory movement (models\marts\latest inventory movement.sgl)
This model has an enforced contract that failed.
Please ensure the name, data type, and number of columns in your contract match the columns in your model’s definition.

| column_name | definition type | contract type | mismatch_reason |

Tests compared to Contracts

I R

What?
When?
How often?

Support?

Data shape
During materialization.
On every materialization

Constraints depend on target
platform

Data quality
After materialization.
As specified

Works on every platform (if
valid SQL)

Lineage Graph

latest_inventory_movement ::uie

Details Description Columns Referenced By Depends On Code

con_inventtable

Documentation |

TAGS OWMNER TYPE PACKAGE LANGUAGE RELATION ACCESS VERSION
inventory hourly dbo table msbid sql msbid_warehouse.dbo.latest_inventory_movement protected COﬂ_inventtrans

dbt docs generates a html Description

pagel CO nta I n i n g a I I Latest inventory movement by itemid used for inventory valuation
information and

dependencies present in cotmns _
. latest_inventory _movement
project
itemid varchar ltem ID
primaryvendorid varchar Primary Vendor ID

d bt d OCS d Oes n Ot latest_inventory_movement datetime2 Latest date of Physical Inventory
contain any data from
your data warehouse. referenced By

inventory_report

Data Tests Exposures

unique_latest_inventory_mowvement_itemid

Deploying dbt to Fabric

* There is no Fabric native way to run dbt
* We need python environment
* LINAK Requirement: Run needs to be scheduled by Azure Data Factory

X dbt Labs E <D

Deploying to Azure Function

™
/
!
™,
/
S
°

/ h / N\ My colleague Allan created a
| docker container with dbt installed

Dbt runs can be started using API

Solution is cheap, reliable and fast

Y v
A
°

i : Requires knowledge on Azure
------------------- e g Functions and docker containers

dbt Runner Warehouse

<&> x """""" dbt SaL
Commands
""""""""""" AT
I
[|
|

£\ DELTA LAKE

o

https://www.linkedin.com/pulse/deploy-dbt-core-

Function A -
| Storage Accgﬁlnt | . Data Sources Onelake | workloads-azure-using-durable-allan-rasmussen-
I"-. .-"II II"- r / 6 Of | f!

\ J \ p

S e e e

https://www.linkedin.com/pulse/deploy-dbt-core-workloads-azure-using-durable-allan-rasmussen-6oflf/
https://www.linkedin.com/pulse/deploy-dbt-core-workloads-azure-using-durable-allan-rasmussen-6oflf/
https://www.linkedin.com/pulse/deploy-dbt-core-workloads-azure-using-durable-allan-rasmussen-6oflf/

1 DET_SCHEMA = "xcu_test"
2 DET_COMMAND = "run --select +ax_assettrans”
3 DET_RETRY_COUNT = 3

w2 min 45 sec - Apache Spark session ready in 2 min 43 s=c 258 ms. Command exearted in 2 sec 130 ms by Sean Douw

Deploying to Fabric Notebook

import os

os.environ] "SERVICE_PRINCIPAL_CLIENTID"] = mssparkutils.credentials. %

getsecret("cakv-URL>»","<secret-namex")

os.environ["SERVICE_PRIMCIPAL_SECRET'] = mssparkutils.credemtials. \
getsecret("<akv-URL»","<secret-namex")

.environ "DBT_SCHEMA'] = DET_SCHEMA

.environ["DBT_PROJECT_DIR'] = "/mnt/repo’

.environ["DET_PROFILES_DIR'] = "/mnt/repo’

i aZ Copy Or git Clone to bring in prOjeCt files ~* 1 sec - Command executed in 909 ms by Sean Douglas Thomsen on 12:44:56 PM, /03,24

pip install dbt-fabric (or use an environment)

L= - T B SR
[s
1

(=T =~
[E T

Use dbt programmatic interface

from dbt.cli.main import dbtRunner, dbtRunnerResult
import re

Simple, but notebook execution can only be
triggered inside Fabric due to API limitations retrisbie_comands = <

"build",
"compile”,
"seed”,
"snapshot",

18 "test”,

11 “run”,

12 "run-operation”,

13

14

15 # 1nitialize
16 dbt = dbtRunner()
17

12 # create CLI args as a list of strings. unmnessary white spaces are remcved.
19 cli_args = re.sub{r"\s+", " ", DET_COMMAND).strip({)}.split(sep=" ")
28

21 # run the command
22 for attempt in range(@,1+DET_RETRY_COUNT)

23 if attempt==8:

24 res: dbtRunnerresult = dbt.invoke{cli_args)

25 if attempt »& and cli_args[@] in retriable_commands:
25 res: dbtRunnerkesult = dbt.inveoke(["retry"])

27 if res.success:

28 break

29 time.sleep(15)

«+ 1 min 4 sec - Command exscuted in 1 min 3 sec 835 ms by Sean Douglas Thomsen on 12:46:00 PM, 6/08/24

New Announcements

Data pipeline support for DBT CLI
Fabric Core REST APIs support Service Principal

Estimated release timeline: Q3 2024

Release Type: Public preview Estimated release timeline: Q3 2024

Release Type: General availability

Data workflows: Build data pipelines powered by Apache Airflow

Estimated release timeline: Q2 2024

Release Type: Public preview

Data workflows are powered by Apache Airflow and offer an integrated Apache Airflow runtime environment, enabling

you to author, execute, and schedule Python DAGs with ease.

dbt is much more

dbt seeds — Define manual data in your projects

Logging — have dbt log run executions to your warehouse

Snapshots — use dbt to snapshot your source data or create SCD

Packages — include open-source packages in your project

Hooks

Grant — use dbt to manage access to your models

Incremental models

Slim ci

Key Take-aways

© dbtis in essence a templating engine

Well suited for teams that prefer SQL

Encourages reusing code, by using templates and macros
Less boiler plate code, more focus on transformations
Provides a data quality testing framework

Can enforce data contracts

Makes documentation a part of development workflow
Deployment to Fabric could be easier

Many popular packages do not support dbt-fabric yet

DOOOO0OO0O

Thank you for your time!

	Slide 1: Premium sponsors
	Slide 2
	Slide 3: Enhancing your Fabric Warehouse with dbt
	Slide 4: Agenda
	Slide 5: Introduction to dbt
	Slide 6: Introduction to dbt
	Slide 7
	Slide 8: dbt is templating engine
	Slide 9: dbt terminology
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Sources
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

