
Premium sponsors

Standard sponsors



Raffle Prizes



Enhancing your Fabric Warehouse with dbt

Sean Douglas Thomsen

Business Intelligence Solution Architect @ LINAK

sdt@linak.com



Agenda

Introduction to 
dbt

Tests Contracts Documentation Deployment



Introduction 
to dbt

• Data build tools

• Open-source framework for data transformations 
within data warehouses.

• Only does the T in ETL

• Focuses on transformations using SQL, automates DDL

• Brings software development best practices to data 
engineering

• Version control

• Testing

• Code reusability

• dbt is written in Python ➔ works well in CI/CD

• Data never leaves our data warehouse!

• Huge community  >30.000 customers



Introduction to dbt

dbt-core

• Open Source

• Free to use

• Command line 
only

dbt-cloud

• Commercial 
Product

• Browser IDE

• Job scheduling

• CI/CD

• Documentation 
hosting

This session only 
discusses dbt-core 
features



Adapters



dbt is templating engine

We write SQL templates using jinja

and configuration and metadata using 
YAML

SQL templates are compiled to runnable 
code during build

Compiled SQL is executed on target 
platform



dbt 
terminology

Model: A select statement

Materialization: How should a model 
be created in target (table, view etc)

Source: External data

Exposure: Downstream use of 
models outside of dbt



Models are 
defined in 
SQL



• Ref() is used to reference models in our project

• By using ref() we do not have to rewrite downstream models when we move target 
schemas

➔Model names need to be unique in dbt

➔Ref() used to build a DAG

ref(), the most important macro in dbtMacros – ref()



We can add our own custom macros

dbt labs recommends not 
going overboard with 
macros. Favor readability 
over strict DRY adherence 
(Don’t repeat yourself)



• Table lineage

• Execution order

• Graph operators

DAG enables…DAG enables…

Select on: models, 
sources, 
exposures, tags, 
path, states, 
configs…



dbt-core is a 
command 
line tool



Side note: dbt vs Databricks Jobs

• No DAG

• Data products on different 
schedules required hand crafted 
jobs



Models are 
described 
with YAML



Implemented as SQL queries

Fail when query returns rows

Tests can have different severities

Executed after model has been materialized

➔ Bad data can be in model accessible by users

When are tests executed?Data tests in dbt



• SQL Templates

• 4 generic tests are included
• Unique

• Not_null

• Accepted_values

• Relationships

• More can be added manually or 
by packages

Generic Tests



Adding a generic test



Generic Test



Generic Tests from dbt_utils

Some templates 
use unsupported 
SQL syntax on 
Fabric

dbt_expectations 
contains dozens of 
tests inspired by 
Great Expectations



Custom Generic Test



Singular Tests – Work only on a specific model



Generic Version of Singular Test



• Brand new feature

• Instead of testing on data in warehouse we test on well defined data with a known 
result

• Are we sure that the logic to find the start of fiscal year always works?

Unit Tests



Unit Tests

Known edge cases

Expected result

Unit Tests



• Data platforms are used by down stream applications

• Any changes to data shapes may break integrations

• Contracts define and enforce a specified data shape

ContractsContracts



dbt Contracts

Contracts 
are specified 
in YAML



Contracts are enforced by platform



Breaking contracts causes failure



Contracts Tests

What? Data shape Data quality

When? During materialization. After materialization. 

How often? On every materialization As specified

Support? Constraints depend on target 
platform

Works on every platform (if 
valid SQL)

Tests compared to Contracts



Sources

Documentation

dbt docs generates a html 
page, containing all 
information and 
dependencies present in 
project

dbt docs does not 
contain any data from 
your data warehouse.



• There is no Fabric native way to run dbt

• We need python environment

• LINAK Requirement: Run needs to be scheduled by Azure Data Factory

DeploymentDeploying dbt to Fabric



• My colleague Allan created a 
docker container with dbt installed

• Dbt runs can be started using API

• Solution is cheap, reliable and fast

• Requires knowledge on Azure 
Functions and docker containers

https://www.linkedin.com/pulse/deploy-dbt-core-
workloads-azure-using-durable-allan-rasmussen-
6oflf/

Azure FunctionDeploying to Azure Function

https://www.linkedin.com/pulse/deploy-dbt-core-workloads-azure-using-durable-allan-rasmussen-6oflf/
https://www.linkedin.com/pulse/deploy-dbt-core-workloads-azure-using-durable-allan-rasmussen-6oflf/
https://www.linkedin.com/pulse/deploy-dbt-core-workloads-azure-using-durable-allan-rasmussen-6oflf/


• pip install dbt-fabric (or use an environment)

• az copy or git clone to bring in project files

• Use dbt programmatic interface

• Simple, but notebook execution can only be 
triggered inside Fabric due to API limitations

Fabric notebookDeploying to Fabric Notebook



Coming changesNew Announcements



• dbt seeds – Define manual data in your projects

• Logging – have dbt log run executions to your warehouse

• Snapshots – use dbt to snapshot your source data or create SCD

• Packages – include open-source packages in your project

• Hooks

• Grant – use dbt to manage access to your models

• Incremental models

• Slim ci

…

dbt is much more



Key Take-aways

☺  dbt is in essence a templating engine
☺  Well suited for teams that prefer SQL
☺  Encourages reusing code, by using templates and macros
☺  Less boiler plate code, more focus on transformations 
☺  Provides a data quality testing framework
☺  Can enforce data contracts
☺  Makes documentation a part of development workflow
 Deployment to Fabric could be easier
 Many popular packages do not support dbt-fabric yet



Thank you for your time!Thank you for your time!


	Slide 1: Premium sponsors
	Slide 2
	Slide 3: Enhancing your Fabric Warehouse with dbt
	Slide 4: Agenda
	Slide 5: Introduction to dbt
	Slide 6: Introduction to dbt
	Slide 7
	Slide 8: dbt is templating engine
	Slide 9: dbt terminology
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Sources
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

