
Speaker Guide

Everything you need to record a great 

presentation for the inaugural eBPF Summit

XRP: In-Kernel 
Storage Function 
with eBPF

Yuhong Zhong @zhong_yuhong



Kernel Software is Becoming the
Bottleneck for Storage

2

NAND
SSD

Optane SSD
(Gen 1)

Average Read Latency Breakdown
100%

75%

50%

25%

0%

Hardware

Kernel
Software~50%

Kernel software overhead accounts for ~50% of read latency on Optane SSD Gen 2

Optane SSD
(Gen 2)

Workload: Random 512B Read



Where Does the Latency Come From?

3

Syscall Layer

User Space

File System and Block Layer

NVMe Driver

Storage Device

Application
Read Request

Read Request

Read Request

Read Request

Read Response

Kernel
Boundary 0.4 μs (5.6%)

0.2 μs (3.2%)

2.4 μs (38.0%)

0.1 μs (1.8%)

3.2 μs (51.4%)

Workload: Random 512B Read, Disk: Optane SSD P5800X

Hardware

Kernel
Software
(48.6%)



Bypass Kernel to Eliminate Overhead

4

Syscall Layer

User Space

File System and Block Layer

NVMe Driver

Storage Device

Application

K
ernelB

ypass

(Managed by User Space, Interrupt Disabled)

Reduce
read
latency
by 49%

Academic Work
Demikernel (SOSP ’21),
Shenango (NSDI ’19),
Snap (SOSP ’19),
IX (SOSP ’17),
Arrakis (OSDI ’14),
mTCP (NSDI ’14),
...

In industry, the
most common
library is SPDK

Kernel
Boundary 0.4 μs (5.6%)

0.2 μs (3.2%)

2.4 μs (38.0%)

0.1 μs (1.8%)

3.2 μs (51.4%)



Kernel Bypass is Not a Panacea

5

Syscall Layer

User Space

File System and Block Layer

NVMe Driver

Storage Device

Application

K
ernelB

ypass

Does not incur the overhead of the
kernel storage stack

No fine-grained access control

Requires busy polling for completion

✅

❌

❌

(Managed by User Space, Interrupt Disabled)

Processes cannot yield CPU
when waiting for I/O❌

❌
CPU cycles are wasted when I/O
utilization is low

❌
CPU cannot be shared efficiently
among multiple processes

Kernel
Boundary



Move Application Logic Into the Kernel

6

Syscall Layer

User Space

File System and Block Layer

NVMe Driver

Storage Device

Application

Potentially
reduce read
latency by
up to 47%

eBPF Function

Read Request

Read Response

Submit read requests
Process read responses

Kernel
Boundary 0.4 μs (5.6%)

0.2 μs (3.2%)

2.4 μs (38.0%)

0.1 μs (1.8%)

3.2 μs (51.4%)

Kernel
Software
(48.6%)



Syscall Layer

User Space

File System and Block Layer

NVMe Driver

Storage Device

7

Kernel Boundary (5.6%)

3.2%

38.0%

1.8%

51.4%

Fetch
Root Node

Parse
Node

Parse
Node

Parse
Node

Traverse the full
kernel software
stack multiple
times

Node parsing and I/O
request submission
are performed in
user space

B+ Tree Index Lookup from User Space



Syscall Layer

User Space

File System and Block Layer

NVMe Driver

Storage Device

8

Kernel Boundary (5.6%)

3.2%

38.0%

1.8%

51.4%

eBPF Function

Fetch

Root Node

Parse Node

Re
tu
rn

Le
af
No
de Only traverse

the full kernel
software stack
once

Reduce the latency of the
intermediate I/O by up to 47%

A Chain of Dependent
Read Requests:

B+ Tree Index Lookup With an eBPF
Function



Chains of Dependent Read Requests are
Very Common

9

Goal: Build a framework for storage engines to accelerate
dependent read requests using in-kernel functions

Issue dependent read requests to perform lookups

LSM TreeB-Tree



Syscall Layer

User Space

File System and Block Layer

NVMe Driver

Storage Device

10

Kernel Boundary (5.6%)

3.2%

38.0%

1.8%

51.4%

XRP: A Framework for In-Kernel Storage
Functions With eBPF

eBPF Function f

Load an eBPF
function into

the kernel

Initiate a
chain of read

requests

f() f() f()

Req 1

Re
tu

rn
fin

al
re

su
lt

to
us

er
sp

ac
e

Req 2 Req 3

XRP can accelerate many types of
operations such as index lookups, range
queries, and aggregations



eBPF is Widely Used in Networking

11

Packet Filtering

Packet Forwarding

Network Scheduling

Packet Tracing

An eBPF program can
operate on each
packet independently

However, a storage eBPF program needs to traverse a
large on-disk data structure in a stateful way



Adopting eBPF in Storage is Challenging

12

Key research challenges:
• Translating file offsets in the NVMe driver
• Augmenting the BPF verifier to support storage use cases
• Resubmitting NVMe requests
• Interaction with application-level caches

XRP is the first system that adopts eBPF to reduce the 
kernel software overhead for storage



eBPF Can Traverse Different Types of
Data Structures

13

u32 btree_lookup(struct bpf_xrp *context) {
struct node *n = (struct node *) context->data;

if (node->type == LEAF) {

}
int i;

u64 search_key = *(u64 *) context->scratch;

for (i = 1; i < MIN(n->fanout, MAX_FANOUT); ++i) {

context->done = true;
return 0;

if (search_key < n->key[i]) break;
}
context->done = false;
context->next_addr[0] = n->addr[i - 1];
return 0;

}

Data Buffer Scratch Buffer

fanout
type

key[0]
key[1]
...

key[n]
addr[0]
...

addr[n]

search_key

(unused)

MAX_FANOUT ensures for loop is
bounded

(Data fetched from disk) (Private scratch space)



14

XRP

BPF-KV

Integrate

A simple B+ tree key-value store

A popular production key-value store

(LSM Tree)

Integration of XRP and Key-Value Stores



Evaluation

• What is the performance benefit of XRP?

15

• How does XRP compare to kernel bypass?

• What types of operations can XRP support?

• Can XRP accelerate a production key-value store?

See our paper: XRP: In-Kernel Storage Functions with eBPF (OSDI ’22)
https://www.usenix.org/conference/osdi22/presentation/zhong

https://www.usenix.org/conference/osdi22/presentation/zhong


16

Multi-threaded throughput in BPF-KV with uniform random 512B read:
Throughput

Increase by up to 120%

XRP can scale well even if the
number of threads exceeds the
number of cores

This is because XRP alleviates the
CPU contention by reducing the CPU
overhead per IO request

XRP Nearly Eliminates the Kernel Software
Overhead



XRP Handles CPU Contention, SPDK Not
So Much

17

SPDK fails to scale beyond 6
threads because SPDK threads
cannot yield CPU when waiting for
I/O to complete

Multi-threaded throughput in BPF-KV with uniform random 512B read:

XRP provides performance that
is close to/better than SPDK
without sacrificing isolation
and CPU efficiency

Each thread represents a different storage application on the same machine

Throughput



18

Multi-threaded tail latency in BPF-KV with uniform random 512B read:
Tail Latency

Compared to read, XRP improves
tail latency by up to 45%

Tail latency of SPDK spikes to ~10
ms when the number of threads is
greater than the number of cores
by more than 50%

XRP Handles CPU Contention, SPDK Not
So Much



Conclusions

• XRP is the first system to use eBPF to accelerate common 
storage functions

• XRP captures most of the performance benefit of kernel 
bypass, without sacrificing CPU utilization and access control

We are actively integrating XRP with other popular key-value
stores including RocksDB

Paper: https://www.usenix.org/conference/osdi22/presentation/zhong
Source Code: http://xrp-project.com/
Email: yz@cs.columbia.edu

19

https://www.usenix.org/conference/osdi22/presentation/zhong
http://xrp-project.com/
mailto:yz@cs.columbia.edu

