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Kernel Software is Becoming the
Bottleneck for Storage
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Where Does the Latency Come From?
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Bypass Kernel to Eliminate Overhead
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(Managed by User Space, Interrupt Disabled)

Reduce
read
latency
by 49%

Academic Work
Demikernel (SOSP ’21),
Shenango (NSDI ’19),
Snap (SOSP ’19),
IX (SOSP ’17),
Arrakis (OSDI ’14),
mTCP (NSDI ’14),
...

In industry, the
most common
library is SPDK
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Kernel Bypass is Not a Panacea
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Does not incur the overhead of the
kernel storage stack

No fine-grained access control

Requires busy polling for completion

✅

❌

❌

(Managed by User Space, Interrupt Disabled)

Processes cannot yield CPU
when waiting for I/O❌

❌
CPU cycles are wasted when I/O
utilization is low

❌
CPU cannot be shared efficiently
among multiple processes

Kernel
Boundary



Move Application Logic Into the Kernel
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Potentially
reduce read
latency by
up to 47%

eBPF Function
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Read Response

Submit read requests
Process read responses
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Kernel Boundary (5.6%)

3.2%

38.0%

1.8%

51.4%

Fetch
Root Node

Parse
Node

Parse
Node

Parse
Node

Traverse the full
kernel software
stack multiple
times

Node parsing and I/O
request submission
are performed in
user space

B+ Tree Index Lookup from User Space
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Kernel Boundary (5.6%)
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once

Reduce the latency of the
intermediate I/O by up to 47%

A Chain of Dependent
Read Requests:

B+ Tree Index Lookup With an eBPF
Function



Chains of Dependent Read Requests are
Very Common
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Goal: Build a framework for storage engines to accelerate
dependent read requests using in-kernel functions

Issue dependent read requests to perform lookups

LSM TreeB-Tree
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Kernel Boundary (5.6%)
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XRP: A Framework for In-Kernel Storage
Functions With eBPF
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XRP can accelerate many types of
operations such as index lookups, range
queries, and aggregations



eBPF is Widely Used in Networking
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Packet Filtering

Packet Forwarding

Network Scheduling

Packet Tracing

An eBPF program can
operate on each
packet independently

However, a storage eBPF program needs to traverse a
large on-disk data structure in a stateful way



Adopting eBPF in Storage is Challenging
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Key research challenges:
• Translating file offsets in the NVMe driver
• Augmenting the BPF verifier to support storage use cases
• Resubmitting NVMe requests
• Interaction with application-level caches

XRP is the first system that adopts eBPF to reduce the 
kernel software overhead for storage



eBPF Can Traverse Different Types of
Data Structures
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u32 btree_lookup(struct bpf_xrp *context) {
struct node *n = (struct node *) context->data;

if (node->type == LEAF) {

}
int i;

u64 search_key = *(u64 *) context->scratch;

for (i = 1; i < MIN(n->fanout, MAX_FANOUT); ++i) {

context->done = true;
return 0;

if (search_key < n->key[i]) break;
}
context->done = false;
context->next_addr[0] = n->addr[i - 1];
return 0;

}

Data Buffer Scratch Buffer

fanout
type

key[0]
key[1]
...

key[n]
addr[0]
...

addr[n]

search_key

(unused)

MAX_FANOUT ensures for loop is
bounded

(Data fetched from disk) (Private scratch space)
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XRP

BPF-KV

Integrate

A simple B+ tree key-value store

A popular production key-value store

(LSM Tree)

Integration of XRP and Key-Value Stores



Evaluation

• What is the performance benefit of XRP?
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• How does XRP compare to kernel bypass?

• What types of operations can XRP support?

• Can XRP accelerate a production key-value store?

See our paper: XRP: In-Kernel Storage Functions with eBPF (OSDI ’22)
https://www.usenix.org/conference/osdi22/presentation/zhong

https://www.usenix.org/conference/osdi22/presentation/zhong
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Multi-threaded throughput in BPF-KV with uniform random 512B read:
Throughput

Increase by up to 120%

XRP can scale well even if the
number of threads exceeds the
number of cores

This is because XRP alleviates the
CPU contention by reducing the CPU
overhead per IO request

XRP Nearly Eliminates the Kernel Software
Overhead



XRP Handles CPU Contention, SPDK Not
So Much
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SPDK fails to scale beyond 6
threads because SPDK threads
cannot yield CPU when waiting for
I/O to complete

Multi-threaded throughput in BPF-KV with uniform random 512B read:

XRP provides performance that
is close to/better than SPDK
without sacrificing isolation
and CPU efficiency

Each thread represents a different storage application on the same machine

Throughput
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Multi-threaded tail latency in BPF-KV with uniform random 512B read:
Tail Latency

Compared to read, XRP improves
tail latency by up to 45%

Tail latency of SPDK spikes to ~10
ms when the number of threads is
greater than the number of cores
by more than 50%

XRP Handles CPU Contention, SPDK Not
So Much



Conclusions

• XRP is the first system to use eBPF to accelerate common 
storage functions

• XRP captures most of the performance benefit of kernel 
bypass, without sacrificing CPU utilization and access control

We are actively integrating XRP with other popular key-value
stores including RocksDB

Paper: https://www.usenix.org/conference/osdi22/presentation/zhong
Source Code: http://xrp-project.com/
Email: yz@cs.columbia.edu
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https://www.usenix.org/conference/osdi22/presentation/zhong
http://xrp-project.com/
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